简介:纳米技术(Nanotechnology)概念最早源于美国诺贝尔物理奖获得者R.Feynman在1959年洛杉矶理工学院的一次物理学年会上做的题为《底层还有很大空间》的著名演讲。但是直到1982年。美国IBM公司成功研制出具有原子分辨能力的扫描隧道显微镜后。纳米技术才首次曝光。并在以后的20多年中得到了飞速发展。目前普遍公认的纳米科技的定义是:在纳米尺度(1-100nm)上研究物质的特性和相互作用.以及利用这些特性的多学科交叉的科学和技术。纳米粒子具有小尺寸效应、表面与界面效应、量子尺寸效应以及宏观量子隧道效应。使得纳米粒子具有常规粒子所不具备的许多特殊性质。如低熔点、高比热容、高膨胀系数、高反应活性、极强的吸波性等。纳米生物技术是国际生物技术领域的前沿和热点问题。目前。美、德、日、英、法和中国均已将纳米技术研究列入国家重点发展的领域。
简介:自从Schwarz和Mertz等人于1957年首次分离出啤酒酵母中的葡萄糖耐量因子(GTF)以来.研究者相继在诸多的牧草、动物的肝、肾脏中发现了GTF样物质,并进一步证实GTF的活性中心为二三价铬离子(Cr^3+)。1959年Schwarz和Mertz发表了有关铬的第一篇论文,现在人们已经证实并公认铬为人和动物的必需微量元素。从20世纪60年代开始.人们开始进行大鼠和人的铬营养研究.结果表明,铬通过GTF协同和增强胰岛素的作用来影响糖类、脂类、蛋白质和核酸的代谢。现在.铬制剂已广泛应用于人的医药、保健品和食品中。然而,人们一直以来在动物养殖和配制饲料时却很少或根本没有对铬的含量、需要等给予更多的关注。这是因为对铬的生理作用缺乏足够的认识,关于铬的实际饲养效果及需要量的研究资料很少,以及尚未发现或意识到动物明显的铬缺乏症。从20世纪90年代开始,铬在动物营养中的作用越来越受到人们的关注与重视。至今为止的众多试验研究结果均表明,饲料中添加铬对动物的繁殖、生长、免疫、胴体品质等均有影响。最近几年,铬在畜禽生产与水产养殖中的应用愈来愈普遍,并取得了很好的养殖效果及经济效益。本文仅就铬的营养作用及在养猪生产中应用的情况作一概述。
简介:将构建携带H1启动子的肌肉生长抑制基因的真核表达载体,通过显微注射技术导入鲤受精卵核区附近,获得了一批具有RNAi表型的转基因鲤,PCR和分子杂交检测证实外源基因整合到受体鱼的基因组中,阳性率为32.78%;一龄鱼的生长实验表明,转基因鲤比普通鲤平均生长快0.99倍,其体高和体厚分别平均增长0.22和0.26倍,其中有31.82%的群体平均体厚是普通鲤的1.6倍。结果显示,该质粒表达的发夹环型dsRNA可以有效降解其转录产物,对阻抑肌细胞中同源基因的表达、鲤肌肉的再生能力增强起到了重要作用。这种抑制作用表现为鲤背部肌肉增厚、体质量增加,说明该基因经转录产生的双链RNA在鲤体内具有RNAi效应。RNAi技术为获得具有特殊功能的转基因鲤提供了新的手段。
简介:从初生到20k阶段的仔猪,是一生中相对生长最快的时期。在仔猪从哺乳期过渡到保育期断奶时,由于仔猪生长发育快、消化生理功能及免疫系统尚未发育成熟等方面的特点.同时遭遇心理、营养、环境等因素的应激.临床表现为采食量和饲料利用率低、腹泻和死亡、生长差甚至体重下降等仔猪断奶综合症,其中断奶营养应激是最主要的。近年来,国内外集约化猪场逐渐采用隔离式早期断奶(Segregatedearly-weaning.简称SEW)仔猪饲养管理技术措施,以防止疫病传染、提高仔猪生产性能和母猪繁殖效率、降低生产成本,仔猪早期断奶应激综合症显得更为突出。为了解决这一难题,人们不但从改良品种、生产环境设施、饲养管理技术方面考虑.动物营养学家也在仔猪日粮配合及营养技术、原料选择、生产加工工艺等方面进行了大量的研究。