学科分类
/ 8
156 个结果
  • 简介:讨论了区间[x-1,x+1]上的积分中值定理在x→+∞时的中间点的渐近性态,证明了在一定条件下,积分中值定理的中间点趋向于区间中点.

  • 标签: 积分中值定理 中间点 渐近性质
  • 简介:在文[1]的基础上.本文对球面上的变阶分数次积分进行了研究,得到它关于Zygmund性质的—个定理

  • 标签: 分数次积分 球面 定理 性质 基础
  • 简介:研究算子本身的性质是研究算子不动点问题的一个重要方法.很多学者在二维的空间中,通过构造不同的压缩映射或者膨胀映射的条件,研究算子的不动点问题.在这篇文章中,我们将引入D-度量空间和D-Ⅲ型膨胀映射的概念,在D-度量空间(三维的空间)中研究D-Ⅲ型膨胀映射的不动点及公共不动点定理.

  • 标签: D-度量空间 D-Ⅲ型膨胀映射 弱匹配映射 不动点
  • 简介:在三维空间R~3中讨论非线性波动方程外区域初边值问题.当外区域 和初值ф、Ф及非线性项F满足一定条件时,利用线性化问题的衰减估计和Nash-Moser技巧,得到了整体解存在定理

  • 标签: 非线性初边值 线性化 外区域 衰减
  • 简介:设{Ei:i∈I}是侧完备Riesz空间E中的一族理想,且Ei∩Ej=φ(i,j∈I,ij).文章引入理想族{Ei:i∈I}直和的概念,并给出一个表示定理.文章证明了:存在一个完备的正则Hausdorff空间X使得理想族的直和Riesz同构于C(X)其充要条件是对每个i∈I存在一个紧Hausdorff空间Xi使得EiRiesz同构于C(Xi).

  • 标签: 侧完备 理想 直和 Riesz同构
  • 简介:在不要求映射的连续性和锥的正规性的条件下,我们得到扩张映射的几个公共不动点定理,所得结果改进和推广了原有的许多重要结论.

  • 标签: 锥度量空间 扩张映射 公共不动点
  • 简介:讨论了集值优化问题严有效解的高阶导数型标量化定理.首先得到了集值优化问题严有效解的一个高阶导数型必要性条件,其次获得了集值优化问题严有效解的标量化必要性条件和充分性条件.

  • 标签: 集值优化问题 广义高阶上图导数 严有效解 标量化
  • 简介:在偏序度量空间中,获得了一些耦合随机不动点定理,引入F-g-不变集新定义,减弱了F的混合g-单调性,所得结果也是近期文献相关结果的推广.

  • 标签: 混合g-单调性 F-g-不变集 耦合随机不动点
  • 简介:本文证明,对任意正整数n∈N及r>1,ωn(r)=∑^∞(m-1)(1/(m+n))(n/m)^1/r≤(π/(sinπ(1-1/r)))-(θr(1)/m^1-1/r).这里,θr(1)=(π/(sinπ(1-1/r)))-∑^∞(m-1)(1/(m+n))(n/m)^1/r是使上式成立的与r有关的最大值1θr(1)>1n2-5/16=0.3806471^+.由此改进了一般Hilbert二重级数定理

  • 标签: 级数 定理 注记 正整数 最大值 证明
  • 简介:本文得到了C*-代数值度量空间中的一些不动点定理,其结果改进并推广了马振华等人发表在2014年《不动点理论及其应用》一文中的工作.而且,运用所得到的结果,获得了一类常见积分方程解的存在性和唯一性定理.

  • 标签: C*-代数值度量空间 不动点 积分方程
  • 简介:在集合上定义了非负实值映射,利用实函数的性质,给出了三个d-集合之间复合映射的不动点存在定理,并讨论了不动点的唯一性.

  • 标签: d-集合 集合映射 不动点
  • 简介:基于概率论理论基础,给出了随机赋范空间中算子的随机范数定义,在此基础上,应用逆算子定理证明了随机赋范空间中算子族的共鸣定理,它以Banach空间中的共鸣定理为特例,是Banach空间中的共鸣定理的随机化形式,随机化的共鸣定理刻划了在随机赋范空间框架下随机变量族的一致有界性.随机赋范空间中的共鸣定理将可能成为随机泛函分析与概率论的新应用工具.

  • 标签: 随机赋范空间 随机范数 共鸣定理 应用