简介:一、填空题1.某数的12比它的3倍小4,则这个数为.2.当x=时,代数式x-1与2x-14相等.3.单项式3a2+xb4与-12a5b2(y-3)是同类项,则x=,y=.4.在公式S=12(a+b)h中,S=120,h=15且b=2a,则a=.5.填出解方程0.1-0.2x0.3=1-0.01x-0.020.06各步的依据:解 1-2x3=1-x-26( )2(1-2x)=6-(x-2)( )2-4x=6-x+2( )-4x+x=6+2-2( )-3x=6( )x=-2( )6.三个连续奇数的和为105,则三个数为.7.某人从甲地到乙地,原计划用6小时,因任务紧急,每小时比原速多行
简介:一、一元选择题(每小题3分,共30分)1.(m2-m-2)x2+mx+2=0是关于x的一元二次方程,则m的取值范围是( )(A)m≠-1 (B)m≠2(C)m≠-1且m≠2 (D)m≠02.关于x的方程(m-2)x2+(1-2m)x+m2-4=0有一个根是零,则m的值应是( )(A)12 (B)-2 (C)2 (D)±23.方程x(x+2)=2(x+2)的解是( )(A)x=2 (B)x=2或x=-2(C)x=-2 (D)无解4.方程2(m-1)x+1=(|m|-1)x2,只有一个实根x,则m=( )(A)-1 (B)0 (C)1 (D)125.已知a、b、c为任意实数,则方程x2-(a+b)
简介:运用Hadmard反函数定理讨论了一类满足渐近非一致性条件的常微分方程组解的存在唯一性,推广了已有结果.
简介:一、填空题(每小题2分,共24分)1.在数轴上,到原点的距离等于3的点,它所对应的有理数是.2.绝对值等于4的有理数是,绝对值小于112的整数有个.3.当x<-7时,代数式|x+7|-|1-x|的值是.4.一项工程,甲队单独做a天完成,乙队单独做b天完成,两队合做需天完成.5.用代数式表示“a、b两数的平方和除以a、b两数差的平方的商”是.6.有理数a,b,c,d,在数轴上的位置如右图,在下面线上分别填入“>”,“=”或“<”号.(1)a的相反数b的相反数.(2)c的相反数a.(3)a的绝对值与c的绝对值的和d的绝对值.7.已知c=abR+ar,试作公式变形,则a=.8.关于x的方程x-2=0