学科分类
/ 25
500 个结果
  • 简介:从探究的角度,对"勾股定理的逆定理"的形成过程进行新的设计:将教科书上"古埃及人用一根绳子围成直角三角形"的问题改编成探究题,让学生先独立思考,再全班交流;运用科学探究,让学生先归纳猜想,再对猜想的结论进行证明;引导反思,让学生探究发现"副产品".

  • 标签: 勾股定理的逆定理 探究学习 探究教学
  • 简介:现在及以前的高中数学教材中都是先讲正弦定理再讲余弦定理.事实上.余弦定理比正弦定理的教学要简洁得多,在解决“边边角”问题时,用余弦定理比用正弦定理往往也要简洁得多.我们在学习知识时,应遵从“从简单到复杂”的基本规律,所以建议先讲授余弦定理再讲授正弦定理

  • 标签: 正弦定理 余弦定理 解三角形 教学规律
  • 简介:勾股定理及其逆定理是中学数学中几个重要的定理之一,它体现了由“形”到“数”和由“数”到“形”的数形结合思想.勾股定理在解决三角形的计算、证明和解决实际问题中得到广泛应用,勾股定理的逆定理常与三角形的内角和、三角形的面积等知识综合在一起进行考查.对于初学勾股定理及其逆定理的学生来说。由于知识、方法不熟练,常常出现一些本应避免的错误,失分率较高.本文拟针对具体失误的原因,配合相关习题进行分析、说明其易错点,希望帮助同学们避免错误,走出误区.

  • 标签: 勾股定理 逆定理 易错点 应用 数形结合思想 知识综合
  • 简介:建构主义认为,知识不是通过教师传授得到的,而是学习者在一定的情境,即社会文化背景下,借助其他人(包括教师和学习同伴)的帮助,利用必要的学习资料,通过意义建构的方式而获得.这一教学论启示教师:构建适合时代需要的教学模式,确立合理的教学方法,按学生的认知规律设计教学,可以大大提高教学效果.笔者以“正弦定理和余弦定理(距离测量问题)”的教学为例,论述通过意义建构的方式获得高效的学习效果.

  • 标签: 教学模式 余弦定理 正弦定理 反思 社会文化背景 意义建构
  • 简介:摘要:随着近些年初中数学课程标准的不断调整和人教版中学教材的逐步改版,弦切角定理、切割线定理和割线定理逐渐远离了大家的视线。但是在很多与圆相关的复杂考题中,它们对于正确快速的解答依然能起到很大作用。就算不再把它们编为必修内容,也可以选修或探究的形式让学生进行了解和学习,以拓宽视野发散思维。

  • 标签: 弦切角定理 切割线定理 割线定理 推理证明 应用。
  • 简介:摘要:随着近些年初中数学课程标准的不断调整和人教版中学教材的逐步改版,弦切角定理、切割线定理和割线定理逐渐远离了大家的视线。但是在很多与圆相关的复杂考题中,它们对于正确快速的解答依然能起到很大作用。就算不再把它们编为必修内容,也可以选修或探究的形式让学生进行了解和学习,以拓宽视野发散思维。

  • 标签: 弦切角定理 切割线定理 割线定理 推理证明 应用。
  • 简介:

  • 标签:
  • 简介:勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理.那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理、商高定理、百牛定理、驴桥定理和埃及三角形等.所谓勾股定理

  • 标签: 勾股定理 毕达哥拉斯定理 历史 科学发现 初等几何 三角形
  • 简介:在我们的习题中不乏下面这组题的身影,而探讨这样的题组,往往能收获更多.

  • 标签: 正弦定理 猜想 组题 题组
  • 简介:垂经定理:垂直于弦的直径平分弦,并且平分这条弦所对的两条弧.用数学符号表示,如图(1).

  • 标签: 垂径定理 符号表示 垂直 数学
  • 简介:大家知道,任意多边形的外角和等于360°,在解题过程中,若能把多边形的“内角”问题转化为多边形的“外角”问题来解决,则可达到“化繁为简、化难为易”的理想效果;尤其是当边数n没确定时,用“外角”解决,更能体现速效之妙.

  • 标签: 解题过程 化繁为简 化难为易 外角和 巧解 定理
  • 简介:网格型题具有新颖性、直观性、可操作性和综合性,不仅能考查图形的对称、勾股定理、面积公式等数学知识以及分类讨论、数形结合等重要数学思想的掌握,而且能通过识图、思考、动手操作、自主探究等过程,较好地把数学知识与多种能力有效地整合在一起.

  • 标签: 勾股定理 网格 数学知识 可操作性 分类讨论 面积公式
  • 简介:蝴蝶定理:如图所示,肘是QO的弦AB的中点,CD,CH是过肘点的两条弦,连结CH,DG交AB于P,Q两点,则MP=MQ.

  • 标签: 蝴蝶定理 证法
  • 简介:本文首先给出Desargues的两个三角形定理及其在射影几何与仿射里的五种叙述;然后分别用分析法、综合法、演绎法、透视法、齐次向量法与解析法等几种方法从不同的角度研究了此定理的证明问题;最后简略地指出它的重要意义。

  • 标签: 定理证明 对应边 Desargues 仿射 共线点 向量法
  • 简介:一、选择题1.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三角形的是().(A)a+b=c(B)a:b:c=3:4:5(C)n=b=2c(D)∠A=∠B=∠C

  • 标签: 单元练习 勾股定理 直角三角形 ABC 选择题