简介:利用Leggett—Williams不动点定理,研究了二阶时滞微分方程边值问题{y"(t)+f(t,y(t-τ))=0,0〈t〈2π;y(t)=0,-τ≤t≤0;y(0)=y(2π)正解的存在性.其中0〈r〈π/2为一常数.我们先建立了该问题至少存在两个正解的充分条件.接着给出其至少存在三个正解的存在定理.
简介:考虑非线性中立型微分差分方程[y(t)+P(t)g(y(t-τ))]′+Q(t)h(y(t-σ))=0的非振动解的渐近性。若无特别申明,本文总假设A函数P(t),Q(t),g(u),h(u)皆为连续函数;B,Q(t)>0;ug(u)>0,uh(u)>0(u≠0);C,g(u)=h(u)=0当且仅当u=0。
简介:考察一类带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶差分隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.