学科分类
/ 25
500 个结果
  • 简介:运用锥上的不动点定理,研究一类脉冲微分方程的概周期解,得到了保证系统存在概周期解的一组充分条件。

  • 标签: 时滞脉冲方程 概周期解 存在性
  • 简介:研究了时间模上的一类具有可变的二阶非线性中立型动力方程的振荡性质,借助时间模上的有关理论和一些分析技巧,得到了该类方程存在有界的最终正解的判别准则,并同时得到了该类方程振荡的几个充分条件.

  • 标签: 振荡性 最终正解 时间模 动力方程 可变时滞
  • 简介:本文讨论一类多量抛物型偏微分方程解的振动性质,获得了其一切解振动的充要条件及一些充分条件.

  • 标签: 时滞 抛物型 振动 充要条件
  • 简介:研究一类偶数阶中立型偏泛函微分方程系统解的振动性,建立了该类系统的解振动的若干充分条件,主要结果通过一些例子加以阐明.

  • 标签: 偏泛函微分方程系统 中立型 时滞 振动性
  • 简介:本文研究一类形如(r(t)x(n-1)(t))′+f(t,x(t),x(Φ(t,x(t)))=0的具状态的高阶非线性微分方程.按照最终正解的量级给出了它们的分类及存在的充分条件.

  • 标签: 时滞 非线性微分方程 正解 渐近行为 不动点
  • 简介:利用Leggett—Williams不动点定理,研究了二阶微分方程边值问题{y"(t)+f(t,y(t-τ))=0,0〈t〈2π;y(t)=0,-τ≤t≤0;y(0)=y(2π)正解的存在性.其中0〈r〈π/2为一常数.我们先建立了该问题至少存在两个正解的充分条件.接着给出其至少存在三个正解的存在定理.

  • 标签: 时滞微分方程 正解 Leggett—Williams不动点定理
  • 简介:

  • 标签:
  • 简介:为证明G.Ladas对一类非线性方程的解有一定周期性的猜测,对一类非线性方程组的扰动解在稳定点的高阶导数的收敛性进行了研究。文章将该非线性方程转化为非线性方程组,同时给出了非线性方程组稳定点的定义,并证明了该非线性方程组的扰动解在稳定点高阶导数的整体收敛性。

  • 标签: 差分方程 高阶导数 整体收敛性
  • 简介:研究一类具有变系数的二阶中立型滞差方程△τ^2[x(t)-c(t)x(t-τ)]=p(t)x(t-σ),t≥t0〉0的解的振动性,给出了该类方程一切有界解振动的几个充分条件.

  • 标签: 中立型差分方程 有界解 振动 非振动
  • 简介:考虑奇阶中立型微分方程[x(t)+Px(t-(?))]n+qx(t-θ)=0,t≥t0(1)这儿n为奇数,P、(?)、q、θ为实数,q≠0,我们得到了在各种情形下方程(1)的解的渐近状态,以及方程(1)振动的充分条件,我们的结果扩充了文[2—5]的结果。

  • 标签: 中立型微分差分方程 渐近性 振动性
  • 简介:考虑了一阶泛函方程Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))),n∈Z正周期解的存在性.其中f,g∈C([0,∞),[0,∞)),λ为参数.运用不动点指数理论获得了上述问题正周期的存在性结果,所得结果推广了Raffoul的相关结果.

  • 标签: 差分方程 正周期解 存在性
  • 简介:考察一类带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.

  • 标签: 非线性SCHRODINGER方程 Legendre谱元法 误差分析
  • 简介:研究如下的具强迫项的高阶非线性滞差方程△my(n)+u(n)∑li=1gi(y(n-τi))=v(n),其中,m1,u,v:N→R,gi:R→R且τi∈{0,1,2,3,…},i=1,2,…,l,得到了使该方程的解具有某种渐近性态的充分条件.

  • 标签: 时滞 差分方程 渐近性 强迫项
  • 简介:研究微分方程x′(t)+p(t)x(t-τ)=0,t≥t0,(x(t)+a(t)x(t-δ)′+b(t)x(t-σ)=0,t≥t0,(2)的解的零点距,采用一种新方法,给出其解任意两相邻零点之间的距离的估计,改进、推广已有的结果。

  • 标签: 零点距 估计 时滞泛函微分方程
  • 简介:在合适的条件下,通过利用Leggett-Williams不动点定理、Green函数理论和数学分析技巧,证明了一类无穷中立型泛函微分方程至少存在两个正周期解,推广了前人的结果。

  • 标签: 泛函微分方程 无穷时滞 正周期解 不动点定理
  • 简介:文[2]研究了一般的具有正负系数的一阶中立型微分方程的振动性,建立了一切解振动的充要条件。本文就其特殊情况进行了计算机算法的研究,得到了依据方程的系数经过计算机处理就能判定方程⑴的振动性。

  • 标签: 振动性 中立型时滞微分方程 充分条件 算法
  • 简介:基于结构分析的思想,讨论大规模病态稀疏线性方程的病态机理和预处理原理,定义该方程组的病态结构、病态因子、去病因子.针对病态结构,设计去病因子,以去病因子为预条件子,并对预条件子的性能进行定量分析,结果表明去病因子是最优预条件子,该预条件子的使用,几乎不增加迭代的计算量,预处理后方程组的主体保持正定对称,条件数接近常数.

  • 标签: 病态机理 病态结构 病态因子 去病因子 预处理
  • 简介:研究滞差方程解的性质在理论和应用中是非常重要的.本文借助研究离散变量的方程振动性的一般方法,研究了一类具有连续变量的变系数偶数阶中立型方程的有界解的振动性,给出了有界解振动的几个充分条件.

  • 标签: 差分方程 有界解 振动 最终正解