简介:关注学生的核心素养,就是要关注“教育要培养什么样的人”这一最根本的教育问题.那么我们应该培养学生哪些关键性的核心素养,才能让学生将来更好地健康发展.我国现阶段教育非常重视核心素养中的问题解决能力,从思想理论高度和实际操作层面都强调了问题解决能力的培养.21世纪数学的核心素养指标中的问题解决,要求学生能够发现并提出关于数学方面的有价值的问题,并能致力于分析其中的每一种答案.“疑是思之始,学之端”,真正的学习都是从提出问题开始的,如果学生没有自己的问题,就不可能有更大的发展.教学实践证明:如果学生具有自主提出问题的能力,那么他们的各项能力就有极大的提高,他们才能够在自主学习中发现、提出问题,并能够很好地解决问题,从而能获得更好的发展.
简介:培养全体学生的数学思维品质,提高数学教学质量是素质教育对数学学科的要求,也是我国对外开放,培养跨世纪人才的需要。我在多年初中数学教学实践中发现,学生在学习过程中,大都因为某些障碍影响了数学思维品质的提高。帮助学生克服障碍走出误区,使他们树立起良好的学习心态,是提高数学教学质量的关键.这就需要针对学生的个体差异和学习的程度进行一些有目的指导,充分利用课堂教学,因材施教,使全体学生的数学思维品质都能得到提高,使他们在感受到成功喜悦的同时得到终身受用的素质提高.一、克服自卑,树立自信这类学生成绩差,对自己的能力常感怀疑,总觉得自己不如他人,以至悲观失望,对学数学丧失信心,他们也想学好数学,但由于基础
简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。
简介:四色问题又称四色猜想,是世界近代三大数学难题之一.1976年两位美国数学家Appel与Haken借助计算机给出了一个证明.时至今日,四色问题的正确性早已得到数学界所承认.但是围绕它的非计算机证明,在近几十年来涌现出了各种不同的研究成果.一方面丰富了图论的内容,另一方面又促进了图的染色理论的发展.本文从研究四色问题的意义出发;揭示了四色问题所隐藏的深刻规律,在此基础上提出了一个比四色问题更具有广泛意义的理论构想.主要目地为四色问题的非计算机证明提供一个研究方向.
简介:今天是大数据的时代,更是一个要求精准的时代,在工作和生活中总会遇到类似在线影片租赁公司Netflix对若干电影进行人气排名的问题.他们试图通过回收影迷打分的问卷调查来解决,可惜许多影迷并没有观看全部电影,因此如何通过这份不完整的问卷调查数据来对电影人气进行排序,就引起了人们的高度关注,其关键点在于矩阵缺失元素的填充.近几年来,数学家们发明了一种崭新的方法——矩阵填充方法,建立数学模型,较好地解决了该问题.类似问题在机器学习、图像和视频处理等领域也会遇到,涉及面较广.本文基于矩阵填充方法,处理2017年12月28日教育部发布的第4轮学科评估数据,建立核范数最小化模型,选取SVT算法,对参评的所有490所高校未参评或未设置学科的得分进行预测,进而计算高校的学科平均得分,得到高校综合排名.同时,由填充后的学科得分也能回答一所高校如果想扩大学科数量,下一个最应该设置的学科是哪一个,从而达到学科优化布局的效果.