学科分类
/ 24
464 个结果
  • 简介:<正>在初中数学竞赛题库中,我们可常见到一类题型:以方程为已知条件,求某个式子的值.对于这种类型题的解法,根据不同的情况,可以考虑以下几种方法来求解.1、求值代入法如果方程中含有参数,必须注意其中的隐念条件,求出数值,从而代入所求式计算其值.

  • 标签: 求值 解题方法 数学竞赛 已知条件 一元二次方程 正整数
  • 简介:在Banach空间中研究非线性算子方程F(x)=0的近似求解问题.首先,把实函数数值积分的梯形公式推广到非线性泛函的Bochner积分中来,得到Bochner积分的梯形公式;然后,利用这一公式来构造牛顿迭代法的变形格式,从而得到梯形牛顿法,并在弱条件的α-判据下借助于优函数技巧证明了它的收敛性.

  • 标签: 梯形牛顿法 α-判据 优函数
  • 简介:(满分100分,90分钟完成)(/1)基础知识达标检测一、选择题(每小题4分,共40分)1.(,『1+I)x?+r,“一2+,『ii=0是关于r的一元二次方程,邶幺m的值是().({)r,j>一1(B),n>1(C)口‘≠一1(D),H≠02.方程x::x的根是().(1)()(B)l(c)2(D)0或13F列方程中,没有实数根的是().(4)!Y:一7x=0(B)5J!一7J+5=0t、C)!r?+3r一4=0(D)16,+9y=244.,f、等式Ⅲf。。’‘)’0的整数僻的个数足().L2x<5l{)1个(B)!个((j)3个(D)4个5.一啦!

  • 标签: 达标检测 不等式 实数根 二次方 换元法 不等式组
  • 简介:基于Lyapunov-Schmidt方法求出给定方程的分岐方程,Newton迭代得到其在分岐点附近的近似非平凡解枝,得到了满意的结果.

  • 标签: 分岐 Lyapunov-Schmidt约化 非平凡解枝
  • 简介:分数阶微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数阶微积分的巨大热情。分数阶微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数阶微分方程边值问题是非线性常微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数阶微分方程边值问题的一些理论,介绍了作者的著作《分数阶微分方程边值问题理论及应用》的基本内容。

  • 标签: 分数阶微积分 边值问题 分数阶模型
  • 简介:分式方程的增根与无解是分式方程中常见的两个概念,学生在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.1分式方程增根与无解的关系分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边同乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值.

  • 标签: 分式方程 增根 无解 巧用 变形过程 取值范围
  • 简介:本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.

  • 标签: 泰勒多项式 分数阶 积分微分方程
  • 简介:InthispaperwestudytheGoursatproblemforsemilinearwaveequationswithzeroboundaryconditioninwhichtheboundaryisthecharacteristicconeforwaveoperator.OurresultstatesthatthesolutionisLipschitzandissmoothawayfromthecharacteristiccone.

  • 标签: 高维古沙问题 半线性波动方程 偏微分 边界条件
  • 简介:介绍拟稳态Maxwell方程在电气工程领域的可计算建模及应用。对于含导电材料的电磁设备,拟稳态Maxwell方程是描述电流密度分布和欧姆损耗的常用模型,在电机、大型变压器等电气工程设备和集成电路等微电子技术领域有广泛应用。以国际计算电磁学会公布的TEAMWorkshopProblem7和21基准族问题为例,阐述拟稳态Maxwell方程的可计算建模和自适应有限元计算。

  • 标签: 拟稳态Maxwell方程 自适应有限元方法
  • 简介:研究Legendre小波方法求解具有一阶导和二阶导类型的线性Fredholmintegro-differential型方程。应用Legendre小波逼近法把这两类方程分别化为代数方程求解.实例说明。Legendre小波在解决这两类方程时的可行性和有效性.

  • 标签: LEGENDRE小波 integro-differential型方程 积分算子矩阵
  • 简介:解一次方程组的思想是消元,消元后转化为一元一次方程.但还要注意仔细观察,认真分析题目的特征、巧妙、灵活地运用消元法来解题.例1 解方程组(1)2x+y-z=2,x+2y+3z=13,-3x+y-2z=-11; ①②③(2)x+2y-3z=-4,4x+8y+9z=5,2x+6y-9z=-15. ①②③分析 上面两题若逐步消元,都比较麻烦.仔细观察,发现方程组(1)三式相加可得y;而方程组(2)呢,可先整体消元求出x和z,于是得妙解.(1)解 由①+②+③得4y=4,即y=1.把y=1代入①、②,得2x-z=1x+3z=11.解之得原方程组的解为x=2,y=1,z=3.(2)解 由②-①×4,得2

  • 标签: 一次方程组 方程组的解 巧解 旅游团 数学竞赛试题 整体消元