简介:利用平方凸函数与凸函数的关系,证明了平方凸函数单侧导数的存在性和单调性,建立了平方凸函数与其单侧导数的不等式关系.在此基础上,给出平方凸函数定积分已有下界的改进和新的下界.给出由平方凸函数Hermite-Hadamard型不等式生成的差值的估计.
简介:Sargent改进的Powell方法是曲线拟合中的一种重要方法。本文利用这种方法针对蕴藻浜特大桥沉降中的实测数据给出了五种模型下的沉降预测,这些模型包括双曲线斜率倒数模型、VanderVeen指数模型、宇都一马指数模型、龚帕兹模型、以及波松曲线模型,并发现这种方法对波松旋回模型和灰色系统模型适用性不强。
简介:应用Eluer求和公式,证明对任意正整数n及实数p>1,1/p+1/q=1,有wn(q)=∑n=1^∝1/m+n(n/m)^1/1
简介:通过构建数据科技乌托邦,对火星移民计划的可持续性问题进行探讨。首先,对比火星与地球的异同点,根据移民的生存目标分析火星乌托邦的社会构成,并制定火星移民的选拔标准;其次,对火星乌托邦的人口分布情况运用Leslie人口模型进行动态演化,并基于人口的演化结果分析收入、教育、平等问题;采用生产法确定火星的经济生产总值,并建立双对数线性模型求解四大产业不同学历劳动者的工资增长函数;通过对火星教师数量与教育产出水平指标的评估,借鉴柯布-道格拉斯生产函数分析教育的投入与产出情况,综合考察火星教育的发展状况;再从人格尊严、经济产出、学历教育角度,引用基尼系数全面地评价火星乌托邦的平等问题,以验证火星移民计划的可行性与可持续性。