简介:结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR—NN).首先,利用支持向量回归方法确定SVR—NN的初始结构和初始化权值,基于支持向量自适应地构造SVR—NN神经网络的隐层节点;然后,使用退火过程的鲁棒学习算法更新网络节点参数和权值.为了验证所提出方法的有效性,给出了自适应SVR-NN应用于非线性动态系统辨识的实例.仿真结果表明,与以前的神经网络方法相比,基于SVR-NN网络的辨识方案能获得相当好的性能,它具有很快的收敛速度.因此,自适应的SVR—NN为非线性系统辨识提供了极有吸引力的新途径.
简介:为了改善真实网络数据集上自动问答系统的性能,定义出新的问题类别集合和通用的答案重新排序模型.问题分类器借助先验词典和语法分析,将语义和语法信息引入信息检索和机器学习方法,呈现为多种多样的训练属性,包括疑问词、中心动词、疑问词与中心动词依赖关系、中心助动词位置、中心名词、中心名词顶级上位词等.进而通过问题类别信息,对问答查询结果重新排序.实验表明:分类器能够精确实现真实网络数据集的问题分类,重新排序后的自动问答结果也能得到明显改善.这说明借助语义和语法信息,真实网络数据集上的自动问答系统等应用可以得到改善,显示出更好的性能.