简介:为了破坏冶炼废水中重金属有机螯合物,例如Cu-EDTA配离子废水,研究一种破络并预处理的新方法。该方法基于铁碳微电解反应原理,.OH在酸性有氧气存在的条件下产生,并在铁碳表面攻击吸附的有机基团导致螯合物的破坏,从而使铜离子将从有机物中剥离下来,然而EDTA将被.OH降解。研究pH值、温度、微电解反应时间、Fe/C质量比对铜离子脱除率及总有机碳(TOC)残余含量的影响,通过扫描电子显微镜分析(SEM)、能谱分析(EDS)、红外光谱分析(FTIR)研究处理前、后样品的表面官能团变化及形貌推断铁碳微电解反应的机理。并进行工业条件优化,得到最佳工艺条件:pH值为2,温度为常温,Fe/C质量比≥0.02,时间为60min,有氧气存在。在该条件下TOC浓度为200mg/L、铜离子浓度为60mg/L的废水反应完成后TOC和Cu残余浓度分别减低到40.66和1.718mg/L;羟基自由基降解反应机理合理解释了该实验现象。
简介:采用分子动力学方法研究氢氧化镁的力学性能和点缺陷能,而对体相和表面所含点缺陷的微观电子结构采用第一性原理进行研究。结果表明,根据缺陷能分析,阳离子间隙和置换缺陷非常容易产生,因此对于氢氧化镁通过引入其他阳离子进行改性相对容易。高的OH键(OHSchottky缺陷)或H键(H的Frenkel缺陷和Schottky缺陷)提高了氢氧化镁脱水过程所获得熵的能垒,从而提高了氢氧化镁的分解温度,这是氢氧化镁能够满足填充型阻燃添加剂的要求本质原因之一。建立了氢氧化镁MD模拟的势能模型,通过模拟计算揭示了氢氧化镁晶体结构与力学性能的关系。为了获得具有较好机械加工性能的添加型阻燃剂,应选薄层状氢氧化镁。确定了含点缺陷氢氧化镁的电子结构。揭示了离子掺杂对氢氧化镁晶体的影响机制,为掺杂离子的选择提供了理论指导。
简介:采用液固分离工艺制备高SiC体积分数Al基电子封装壳体(54%SiC,体积分数),借助光学显微镜和扫描电镜分析壳体复合材料中SiC的形态分布及其断口形貌,并测定其物理性能和力学性能。结果表明:SiCp/Al壳体复合材料中Al基体相互连接构成网状,SiC颗粒均匀镶嵌分布于Al基体中。复合材料的密度为2.93g/cm^3,致密度为98.7%,热导率为175W/(·K),热膨胀系数为10.3×10^-6K^-1(25~400℃),抗压强度为496MPa,抗弯强度为404.5MPa。复合材料的主要断裂方式为SiC颗粒的脆性断裂同时伴随着Al基体的韧性断裂,其热导率高于Si/Al合金的,热膨胀系数与芯片材料的相匹配。
简介:基于热分析结果,对AM50-4%(Zn,Y)(Zn/Y摩尔比为6:1)合金设计并实施一种两步递进固溶处理。利用OM、XRD、SEM/EDS、TEM、拉伸实验和硬度实验研究固溶与时效处理对AM50-4%(Zn,Y)合金组织与力学性能的影响。结果表明:与一步固溶处理相比,两步递进固溶处理能够使Φ和β相充分溶解于基体,获得更高的溶质过饱和度,从而一定程度上增强合金在后续时效处理中的弥散强化效果。在180℃进行时效处理时,Φ相析出对合金综合力学性能的影响要大于β相。经两步递进固溶处理(345℃,16h+375℃,6h)的AM50.4%(Zn,Y)合金在时效处理(180℃,12h)后获得峰时效强度。
简介:10月1日起,环保领域一项法规、一项指南、三项标准将正式施行,涉及环评、固废、机动车等多个领域。《建设项目环境保护管理条例》于10月1日起施行,开启新环评时代。