简介:一、判断题(每小题1分,共10分)1.整数和分数统称有理数.( )2.设甲数为x,若乙数比甲数的一半小2,则乙数是12(x-2).( )3.若a、b互为相反数,则13(a-b)=0.( )4.若a>0,b<0,则1a>1b.( )5.没有最大的负数.( )6.两个有理数的差一定小于被减数.( )7.任何有理数都有倒数.( )8.两个有理数的和与积都是正数,则这两个数必都是正数.( )9.如果(-x)2=9,那么x=3.( )10.一个数的平方一定是正数.( )二、填空题(每小题2分,共20分)1.-35的相反数是,-23的倒数是.2.x的平方与y的倒数的和表示为.3.绝对值是5的数是,平方得2
简介:对[0,2π]年的区间I,对它的左右两个半区间L,R,定义一种加权原子形如b(t)=1/(p(t))[X1-XR(t)],其中ρ为满足某些性质的非负函数,加权原子b(t)的线性组合构成加权原子空间B(ρ),本文证明了如果f∈B(ρ),则f的Fourier级数的Cesaro平均几乎处处收敛。
简介:一、判断题(每小题1分,共8分)1.a的平方与8的差的7倍写成7a2-8.( )2.(a2+b2)+ab叙述为:a、b两数和的平方与a、b两数积的和.( )3.-13的相反数的倒数是3.( )4.如果a是一个有理数,那么-a一定是个负数.( )5.在数轴上与原点的距离越远的点表示的数不一定越大.( )6.近似数3.8万是精确到千位的数.( )7.在有理数范围内a2≥1a2一定成立.( )8.两个相反数的和除以它们的积,所得的商等于零.( )二、填空题(每小题2分,共20分)1.12(a+5)用语言叙述为:.2.非负数集合中,最小的数是,最大的数是.3.数轴上A点表示-3,则距A点5个单位长度的
简介:讨论单位圆盘中Dirichlet空间上Toeplitz算子的性质,给出了Dirichiet空间上以一类连续函数为符号的Toeplitz算子满足亚正规性的充分必要条件.
简介:研究了调和Dirichlet空间上调和符号的小Hankel算子的乘积,给出了此类小Hankel算子交换性和乘积为零的完全刻画.
简介:本文利用一种积分平均函数给出了加权Dirichlet空间Dα。(α>-1)上的复合算子Cψ为Schattenp-类算子的充要条件.此结果包含了过去已有的关于Hardy空间及加权Bergman空间Aα(α>-1)上的复合算子的已有结论.主要定理是:设p>0,α>一1,ψεDa,则Cψ为Dα上的Schatten p-类算子的充要条件是存在δ>0,使得积分平均函数Φδ(z)=λ(D(z,δ))=1 integral form n=D(z,δ)τψ,α(ω)d-λ(ω)属于L2p(dv),其中D(z,δ)为伪双曲圆盘,τψ,α为Cψ关于Dα的确定函数;dv(z)=(1-|z|2)-2dλ(z),dλ为D上的就范面积测度.
简介:通过拟Abelian范畴的局部类构造出函子范畴的局部类,进一步研究函子范畴的局部化范畴与局部化范畴的函子范畴之间的关系.
简介:探讨加权Bergman空间A^p(φ)上的Carleson型测度和具有非负测度符号的Toeplitz算子,给出Carleson测度或消没Carleson测度的若干等价描述并用Carleson测度的方法刻画了Toeplitz算子是有界的或紧致的充要条件.