简介:当前印刷电路板呈现出两大趋势,即应用于较高的工作频率和装配中使用无铅焊,因此对介电材料的要求更苛刻,主要表现在:低介电常数、低介电损耗、高使用温度、低吸水性.热塑性材料——聚苯醚(PPE)的使用被证明能有效地提升热固性材料的性能,如优秀的耐水解性能、低吸水性、极高的玻璃化温度、在较宽的温度和频率范围内杰出的电性能,以及无需卤素阻燃剂就可达到良好的阻燃性能.研究显示,在热固性材料中使用热塑性材料,充分固化后的材料可取得多种的相态,分子交联网络结构呈现出复杂性.据报道,在广泛增强介电材料性能的材料研究中,多官能团聚苯醚低聚体取得了突破性进展.这种多官能团聚苯醚低聚体作为大分子单体可和环氧树脂反应并提升其多种性能.
简介:基于热分析结果,对AM50-4%(Zn,Y)(Zn/Y摩尔比为6:1)合金设计并实施一种两步递进固溶处理。利用OM、XRD、SEM/EDS、TEM、拉伸实验和硬度实验研究固溶与时效处理对AM50-4%(Zn,Y)合金组织与力学性能的影响。结果表明:与一步固溶处理相比,两步递进固溶处理能够使Φ和β相充分溶解于基体,获得更高的溶质过饱和度,从而一定程度上增强合金在后续时效处理中的弥散强化效果。在180℃进行时效处理时,Φ相析出对合金综合力学性能的影响要大于β相。经两步递进固溶处理(345℃,16h+375℃,6h)的AM50.4%(Zn,Y)合金在时效处理(180℃,12h)后获得峰时效强度。
简介:以固相含量为20%(质量分数)、Al2O3/SiO2质量比为2:1的Al2O3-SiO2溶胶为原料,制备三维编织碳纤维增强莫来石(3DC/mullite)复合材料.分析溶胶的特性与莫来石化行为,发现溶胶经1300℃热处理基本实现完全莫来石化,凝胶粉呈现出较好的烧结收缩特性.通过溶胶“真空浸渍-干燥-热处理”路线制备出3DC/mullite复合材料,即使总孔隙率为26.0%,复合材料仍获得良好的力学性能,弯曲强度和断裂韧性分别为241.2MPa和10.9MPa·m1/2.表征复合材料在1200、1400和1600℃下的抗氧化性能.由于基体的进一步致密化,3DC/mullite复合材料在1600℃下氧化30min后,仅有微小的质量损失,力学性能几乎没有变化.
简介:采用化学抛光处理钛、阳极氧化和微弧氧化处理钛作为生物材料模型,研究成骨细胞MG-63在其表面的黏附和增殖机理。结果表明,阳极氧化和微弧氧化处理的钛表面通过促进MG-63细胞分泌纤维连接蛋白形成细胞外基质从而使其快速附着和伸展。另外,阳极氧化和微弧氧化处理的钛表面通过Outside-in信号传导通路,上调纤维连接蛋白及与其相关的整合素α5的转录水平,促进成骨细胞MG-63在其表面的增殖。
简介:研究热挤压Al5083/B4C纳米复合材料的显微组织表征和力学行为。Al5083和Al5083/B4C粉末在氩气气氛和旋转速度400r/min条件下球磨50h。为提高伸长率,将球磨粉末与30%和50%(质量分数)平均粒径>100μm和<100μm未球磨粉末进行混合,然后进行热压和热挤压,挤压比为9:1。采用光学显微镜、扫描电子显微镜、能谱、透射电子显微镜、拉伸和硬度测试研究了热挤压合金。结果表明,机械球磨和B4C颗粒使Al5083合金的屈服强度从130MPa提高至560MPa,但伸长率急剧下降(从11.3%降至0.49%)。添加平均粒径<100μm未球磨颗粒可提高合金的塑性但降低拉伸强度和硬度,而添加平均粒径>100μm未球磨颗粒同时降低拉伸强度和塑性。随着未球磨颗粒含量的增加,断裂机理从脆性断裂转变为韧性断裂。
简介:基于刀具磨损和钻孔尺寸误差等多个性能指标,对B4C颗粒增强铝合金切削加工参数进行评估和优化。通过Taguchi的L27,3水平4因子正交阵列进行实验设计。研究结果表明:磨粒磨损和积屑瘤一般在刀具磨损时形成,同时,边角磨损也具有重大意义。影响切削刀具的侧面磨损主要决定因素是合金中的颗粒质量分数,其次分别是进给速率、钻头的硬度和主轴转速。在所有使用的刀具中,有TiAlN涂层的硬质合金钻头在刀具磨损以及孔尺寸方面具有最佳性能。灰关系分析表明:钻头材料的影响比进给速度和主轴转速的影响更大。在最佳的钻探参数下可以得到最小的刀具磨损和孔直径误差。
简介:以Ti+Ni+B4C粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得TiB-TiC共同增强TiNi-Ti2Ni金属间化合物复合涂层。采用OM、SEM、XRD、EDS及AFM等手段分析激光熔覆涂层的显微组织及磨损表面,测试涂层的室温干滑动磨损性能。结果表明,激光熔覆TiB-TiC增强TiNi-Ti2Ni金属间化合物复合涂层熔覆具有独特的显微组织,菊花状的TiB-TiC共晶均匀分布在TiNi-Ti2Ni双相金属间化合物基体中。由于高硬、高耐磨TiB-TiC陶瓷相与高韧性TiNi-Ti2Ni双相金属间化合物基体的共同配合,激光熔覆涂层表现出优异的耐磨性。
简介:研究石墨烯微片(GNPs)的添加对AZ31镁合金纳米颗粒增强活性钨极氩弧焊(NSA-TIG)焊接接头显微组织及力学性能的影响。结果表明,与活性化焊接(A-TIG)相比,NSA-TIG接头熔合区的α-Mg晶粒明显细化,且活性剂为TiO2+GNPs的接头融合区的α-Mg粒径最小。此外,与涂覆TiO2+SiCp活性剂的接头相比,涂覆TiO2+GNPs活性剂接头的熔深并没有明显的变化,但其力学性能(显微硬度和极限拉伸强度)都明显提高。且涂覆GNPs后接头在拉伸时出现了颈缩现象。