简介:摘要:河口采油厂义178、义184等区块油藏埋深深且渗透率低,存在动液面深、泵效低、油气比高易气锁、易结蜡等问题,油井低产低液,检泵周期短,开发效益差。针对存在的问题,应用非常规油藏效益举升技术,有效加深泵挂、放大生产压差、减少气锁及防蜡除垢,提高油井产量,延长油井检泵周期,实现非常规油藏的效益开发。
简介:非常规低渗(致密)轻质油油藏日已成为北美一种重要的油藏类型。和非常规气藏一样,这类低渗油藏的特征也复杂多变,从而导致油井显示出不同的生产动态特征。非常规轻质油油藏所用的钻完井方法也有别于常规油藏。我们建议借鉴非常规气藏分类方法(即基于储层/流体性质的分类方法)对非常规轻质油油藏进行分类,因为,迄今为止,在西加拿大不同的非常规轻质油油区所观察到的储层和生产特征明显不同。我们建议将这类油藏统称为“非常规轻质油”油藏,以区别于非常规重质油(高粘)油藏。通过研究,我们提出下列非常规轻质油油藏类别,可用作勘探开发实用指南:1.“光环油藏”——源岩与储层不同层且基质渗透率相对较高(〉0.1md)的轻质油油藏。这类油藏达不到常规油藏的岩石物性下限和产层标准,储层岩性可以是碎屑岩或碳酸盐岩。2.“致密油藏”——源岩与储层不同层且基质渗透率低(〈O.1md)的轻质油油藏。这类油藏与致密气藏类似,储层岩性可以是碎屑岩或碳酸盐岩。3.“页岩油藏”——源岩与储层同层且基质渗透率极低、有机质含量较高的轻质油油藏。页岩油藏与页岩气藏类似。这三种非常规轻质油油藏都需要现代化完井方法(如水平井)和增产方法(水力压裂)方可实现商业化开采。此外,这三种油藏及对应气藏之间的差异与流体高压物性之间的差异并无紧密关系。文中,我们利用现代产量不稳定分析方法研究西加拿大三种非常规轻质油油藏的生产特征差异,并推断出每种油藏生产动态特征的主要影响因素。不出我们所料,油藏类型和完井方法不同,生产动态特征差异很大。
简介:摘要:常规的流程设计会在流程图中将审批节点一一描绘出来,只要一个审批节点不同,此流程图与流程模板就无法共用。想实现一个共用型的流程审批模板,必须在流程图中将审批环节抽象化,在流程图外部配置审批环节。
简介:许多致密气井和页岩气井的线性流态都可以持续数年。然而,非常规油藏(如巴肯油藏)生产分析表明,线性流态并不是唯一的主导流态。现场数据表明,受增产处理油藏体积(SRV)影响的边界流(boundary—dominatedflow)和复合线性流的持续时间一般要远长于早期的线性流态。根据裂缝网络或SRV模式,非常规油藏的线性流态可能只持续几个月,但对估计最终开采量(EUR)的贡献却高达约30%。本研究提出了一种基于解析模型来识别裂缝网络模式和获取相关流动参数的方法,由此得出的油藏描述结果被移植到油藏~流量数值模拟模型中,用于捕捉非常规油藏系统中压实作用、多相流动特性以及各种流态对开采动态的影响。这种方法有助于认识油井的开采动态,以便于了解历史拟合情况。特别是,文中通过产量不稳定分析确定了裂缝网络模式和流态,通过数值模拟与解析模型相结合,开展了生产动态约束下的历史拟合;对非均质效应、压实效应和多相流效应进行了敏感性分析;此外,还介绍了本方法在巴肯油井的现场应用。研究认为,在开展详细的油藏一流量数值模拟研究之前,应当先进行解析模拟。该项研究成果为改善非常规油藏描述奠定了基础。
简介:非常规浅层生物气可分成两个截然不同的含气系统,因为它们具有不同特征。早期生成的含气系统的几何形状呈席状,并且在源岩和储集岩沉积后不久就开始生气。晚期生成的含气系统的几何形状呈环状,并且源岩和储集岩沉积后隔很长一段时间才生气。对于这两个含气系统类型来说,气主要是甲烷气,并且均与未达到热成熟的源岩有关。早期生成的生物气含气系统以艾伯塔(Alberta)、萨斯喀彻温(Saskatchewan)和蒙大拿(Montana)的大平原(GreatPlains)北部白垩纪低渗透率岩层产出的气为代表。主要产区为艾伯塔盆地东南边缘和威利斯顿(Williston)盆地西北边缘地区。很大体积的白垩纪岩层的区域分布型式可以概括为西面为厚层、陆相、粗粒碎屑岩、而东面为海相薄层、细粒岩层。下部的储集岩往往要比上部储集岩颗粒更细,并且具有更低的孔隙度和渗透率。同样,下部的源岩层具有更高的总有机碳值。上部单元和下部单元的侵蚀、沉积、变形和生产模式均与以区域断裂线为界的基底断块的几何形状有关。地球化学研究表明气和共同产出的水处于平衡状态,并且该流体相对比较老,即达66Ma。早期生成含气系统的其它例子还有威利斯顿盆地西南边缘的白垩系碎屑储集层和丹佛(Denver)盆地东部边缘的白垩层。密歇根(Michigan)盆地北部边缘的泥盆系安特里姆(Antrim)页岩可作为晚期生成生物气含气系统的典型。储集岩是裂缝性,富含有机质的黑色页岩,它同时也作为源岩。尽管裂缝对开采很重要,但是裂缝与某些具体地质构造的关系并不清楚。地球化学资料表明,和气一起采出的大量水是相当淡的水,而且比较年轻。目前的见解认为,生物气是在冰川融水进入由裂缝造成的通道系统时生成的,可能现在还继续生成。晚期生成含气系统的其它例子还有�