简介:通过特殊岩心分析(SCAL)测试得到的数据对油藏工程模型具有重要的影响。本文阐述了为SCAL测试选择代表性样品时所需要的一些标准和测试。推荐的这项技术可以保证选取到代表储层内合适的流体封隔箱或者地层岩相的高质量岩心栓。肉眼观察、有时还有计算机层析成象术是用于SCAL研究中评价和选择岩心栓的两种主要手段。虽然可以对卤水渗透率进行测量,但没有一种可以直接测量SCAL岩心栓的孔隙度(φ)而不影响其润湿性的方法。其它的选择手段包括使用“姐妹岩心栓”上传统的岩心分析数据(k和φ)作为SCAL样品性质的通用指标。开发出了一种非常适合于保存样品或原状样品的选择技术来识别具有类似孔隙度/渗透率关系的储层层段。它综合应用了电缆测井、伽马扫描、定量CT和原状卤水渗透率数据。该技术利用这些数据来计算合适的深移储层性质指数(RQI)和流动层指标(FZI)数据。然后再用这些数据从每个储层封隔箱中选取具有代表性的岩心栓样品。作为一个实例,采用该选择指标从中东的上侏罗统碳酸盐岩储层申选取了大约400块SCA工。岩心栓。本文阐述了选择性岩心栓的具体步骤以及将这些岩心栓组合起来用于有意义的SCAL测试的选择标准。
简介:油水过渡带内可采油的数量取决于过渡带内含油饱和度(随深度)的分布、原始含油饱和度与最终含油饱和度(Soitz和Sortz)的关系,以及过渡带容积的大小。传统的做法是,视Sortz为一常数,数值上等于油水过渡带之上油柱的残余油饱和度(Sor)。然而,文献中有限的资料表明残余油饱和度依赖于原始含油饱和度,正如捕集油的关系所描述的那样。因此,最终含油饱和度(Sortz)应该是原始含油饱和度(Soitz)的函数。本文的目的是介绍经最新实验证实的捕集油关系并论证该关系对油水过渡带中储量估算的影响。确定捕集油关系对储量估算的影响可以通过以下两种方式来实现:第一,利用分析模型:该模型可以显示在考虑捕集油关系时最大可能增加的效益;第二,利用扩展的黑油模拟法:该模拟法考虑了相对渗透率对储量估算的影响。
简介:北美重力数据库以及加拿大、墨西哥和美国各自国家的数据库正在重新修订,以提高其数据应用的准确性、扩大其应用区域和用途范围。这项修订的重要内容是改进重力异常的归算程序,其中涉及到提高计算能力、完善地形数据库以及准确定义长波段的重力异常诸方面内容。数据库用户可以比较修订前后的数据库获得它们之间的些微误差。一般情况下,误差并不影响局部异常,但可以提高区域异常的研究。最大的不同在于,修订后的重力测点高程是相对于国际上接受的地形椭球体,而不是常规应用的大地水准面或海平面。基于程序修订前后的重力观测和重力异常主要数据以及相关的元数据,将在以互联网为基础的数据库系统,以及国家代理和数据中心获得应用。由于GPS定位系统在野外测量工作中的广泛应用,以及提高异常精确度和北美和国家数据库一致性的要求,鼓励用修订的程序进行重力数据归算。基于修订标准的重力异常前面加形容词“椭球的”,以区分与常规使用的用参考大地水准面海拔高计算的异常。
简介:诸如阿普斯(Arps)产量/时间关系式及其衍生关系式等传统的产量递减分析方法并不适用于裂缝流起主导作用的超致密或页岩油气藏。这些井大部分的生产数据都表现出裂缝控制的流态,且很少能达到后期流态,甚至在生产若干年后亦如此。由于缺乏拟径向流动和边界主导的流动(BDFS),所以即无法确定基岩渗透率也无法确定泄油面积。这表明,与裂缝的作用相比,基岩的作用可以忽略不计,因此,估计最终开采量(EUR)也不能依据传统的泄油面积概念来确定。对于那些裂缝流起主导作用、基岩的作用可以忽略不计的油井,本文提出了一种替代方法来估算其估计最终开采量(EUR)。为了保持这些裂缝流,裂缝区连通裂缝的密度必须随时间而增大。受裂缝衰竭导致局部应力变化的影响,连通裂缝密度增大是完全可能的。裂缝网络内的压力衰减会使现有的断层或裂缝再次开启,这会破坏页岩中流体压力的完整性。如果这些断层或裂缝再次开启,页岩的渗透率也会随之增大,流体运移能力也将增强。对于恒定井底流压下的裂缝流,无论裂缝属何种类型,累积产量随时间的变化在双对数坐标中均呈一条斜率为1的直线。不过在实际生产中,受现场作业情况、数据近似以及流态变化等因素影响,我们所观测到的斜率通常会大于1。可以利用双对数坐标的截距和斜率值以及初始产气量来建立产量/时间或累积产量/时间的关系。本文分别利用产干气和液态烃含量较高的天然气以及产油的几个超致密和页岩气区带的现场案例对这种新模型进行了检验。结果表明,所有实例均表现为该模型所预测的直线趋势,其斜率和截距与储层类型相关。换言之,受储集岩特征和/或压裂增产作业影响,在指定区域或区带内的某一特定裂缝流态或流动类型组�
简介:砂箱类比模拟试验提供了一种新的方法来进一步认识断层形状对储层连通性的影响。随着断层的不断延展,断层体系演化显然经历了3个时期:第一期,几何形态简单的断层在彤变区域的多个地点迅速集结;随后进入第二期,这一阶段断层相连,断层线长度增加;第三期则以断层的准稳定态集结和相连为特征。储集层的连通性涉及许多因素,本文只注重断层控制的连通性。这种连通性可以从两个方面来认识:岩体的连通性(断层间与断层周围的岩体连通性)和断层网的连通性。这两方面的认识取决于切割储集层的断层究竟是起阻挡流体流动的作用(例如在高孔隙砂岩储层中),或是成为流体流动的通道(例如在裂缝性碳酸盐岩储层中)。我们对断层控制的连通性采用两个度量值:1)从断层和可能的流体通道(flowpaths)的交点数推出断层密度值;2)断层端点(faulttip)数与断层数之比。将这两个值综合后即可得出储层的传导特性和储集层的最终漏失量。