学科分类
/ 5
85 个结果
  • 简介:珠算是我国计算技术中最基本、最广泛的计算工具。即使在当今电子时代,珠算仍不断发展,并呈现着不衰的生命力,特别是在我们财会等经济工作者中有着不可替代的地位。

  • 标签: 应用 算盘 计算技术 计算工具 电子时代 可替代
  • 简介:由于保险公司经营规模的不断扩大,险种类型的增多,用古典风险模型及其其它推广的单一险种风险模型来研究其风险经营过程存在着局限性,因而需要建立多险种的风险模型。本文研究了一类两种险种且理赔次数服从Cox过程的模型。得到了破产概率满足推广的Lundberg不等式。以及在特殊情况时ψ(0)的明确表达式。

  • 标签: 风险过程 COX过程 破产概率 LUNDBERG不等式 保险公司
  • 简介:目前,我国市场经济体制正处于改革发展阶段,还不够成熟,有待完善。而在此经济大环境中,国有企业原有的运行机制与市场经济不相适应,致使大面积的国有企业亏损,效益滑坡,陷入危困之中,阻碍了我国经济高速发展的进程。因此进一步加大国企改革力度,加快国有企业改革步伐,已是当务之急。

  • 标签: 国有企业 利用外资 嫁接改造 造国 外资嫁接 济南大学
  • 简介:记G(n)为所有n阶连通简单圈图所构成的集合.本文主要讨论G(n)按其度距离从小到大进行排序的问题,并确定了该序的前两个图及其相应的度距离,其中具有最小度距离的图是由星图K1,n-1的一个悬挂点与另外两个悬挂点之间各连上一条边所得的图Sn.

  • 标签: 双圈图 度距离
  • 简介:当生灭拟Q矩阵Q为全稳定或单瞬时时,Q过程的存在和构造问题已由Feller[1],杨向群[2]和唐令琪[3]解决,而当Q同时含有无穷多个瞬时态和无穷多个稳定态时,Q过程的存在和构造问题都变得十分困难。本文对“无限”生灭拟Q矩阵,得到了生灭Q过程的存在定理。

  • 标签: 存在性 密度矩阵 生灭 构造问题 稳定态 瞬时态
  • 简介:在l^1空间研究了常微分方程形式的M/M/1队模型确定的算子А的谱问题.通过细致的谱分析,表明算子А的谱是一个椭圆型,椭圆内部点全是算子А的本征值.0位于椭圆的右边界点是边界上唯一的本征值,从而0不能与其它谱点相分离.这一结果表明常微分方程形式的M/M/1队系统在有限时间不可能看到系统的稳定状态.

  • 标签: M/M/1排队模型 几何解 概率母函数
  • 简介:研究Banach空间中积分半群的生成条件.利用算子A的豫解算子,给出了积分半群T(t)的生成定理.结果表明:如果对任意的x∈X,f∈X*,以及()|λ|≤δ,λ∈ρ(A),有∈Lp(R),则存在算子族S(t),t∈R,S(t)强连续且满足积分半群的定义.

  • 标签: BANACH空间 积分双半群 生成条件
  • 简介:研究了同时考虑单重休假和N-策略两种休假策略的排队系统,其休假准则为任一个条件满足.我们给出了此排队系统的稳态队长,忙期分布等基本指标,并得到稳态等待时间的LST(Laplace—StieltjesTrans—form)。

  • 标签: 单重休假 N-策略 嵌入马氏链 随机分解
  • 简介:首先将[3]的Possion风险模型推广到带干扰的一种新模型。然后运用鞅论的方法得出破产概率满足Lundberg不等式和一般公式。以及当个体所赔服从指数分布时的破产概率的具体表达式。

  • 标签: 干扰 风险模型 停时 破产概率 保险公司
  • 简介:Inthispaper,theconceptofthes-doublydiagonallydominantmatricesisintroducedandthepropertiesofthesematricesarediscussed.Withthepropertiesofthes-doublydiagonallydominantmatricesandthepropertiesofcomparisonmatrices,someequivalentconditionsforH-matricesarepresented.TheseconditionsgeneralizeandimproveexistingresultsabouttheequivalentconditionsforH-matrices.Applicationsandexamplesusingthesenewequivalentconditionsarealsopresented,andanewinclusionregionofk-multipleeigenvaluesofmatricesisobtained.

  • 标签: H-矩阵 S-双对角占优矩阵 余角 高斯变换
  • 简介:本文研究了无完美服务无等待的M/G/1队系统的指数稳定性.首先运用预解正算子理论,证得该系统主算子和系统算子均为预解正算子.然后对主算子的谱界进行估值,并得到主算子的谱界与各修复率平均值的最小值互为相反数这一结论.进而利用共尾理论证明主算子谱界等于其增长界.最后,通过分析系统算子的谱分布,得到了系统的指数稳定性.

  • 标签: 无完美服务无等待 预解正算子 共尾 指数稳定性