简介:<正>1.计算:53.3÷0.23÷0.91×16.1÷0.82=__。2.计算(1×2×3+2×4×6+3×6×9+4×8×l2+5×10×15)/(1×3×5+2×6×10+3×9×15+4×12×20+5×15×25)=__。3.在下面数列中,第1999个数是__1,-2,2,-3,3,-3,4,-4,4,-4,5,-5,5,-5,5,-6,6,-6,6,-6,6,……4.有一项工程,小明先独做30天,接着小华继续独做5天,以后,他们两个合做10天才完成这项工程。同样的工程,如果由小华和小明合做,只需20天便可完成,假设小明
简介:对于圆锥型和棱锥型Hamiltonian的Eikonal型方程,本文给出了一种几何方法,得出其初值问题解的表达式并且说明由此式给出的解为原初值问题的粘性解.首先用一个凸函数序列逼近Eikonal型方程中的Hamiltonian,再由Hopf-Lax公式给出方程序列的粘性解,最后证明了该粘性解序列会收敛到Eikonal方程的粘性解.
简介:一、一元选择题(每小题3分,共45分)1.-|-2|的倒数是( )(A)-2 (B)-12 (C)12 (D)22.(-a3)2÷(-a)的运算结果是( )(A)a6 (B)-a6 (C)a5 (D)-a53.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是( )(A)三角形 (B)四边形(C)五边形 (D)六边形4.如果实数x、y满足|x+2|+(x-12y)2=0,那么xy的值等于( )(A)-116 (B)116 (C)-18 (D)185.当锐角A>30°,cosA的值( )(A)小于12 (B)小于32(C)大于12 (D)大于326.要使分式|x|-22x2-x-6