简介:摘要:随着煤矿机械设备的发展和采掘技术的进步,煤矿开采深度和掘进面单进深度不断提高,掘进速度也不断加快,造成了瓦斯排放速度和绝对涌出量增加。由于其环境的复杂性和不确定性,煤尘、瓦斯等排放随时变化,且随着井下巷道日益复杂,采掘机械和采掘速度的进步,井下通风系统管理的变量越来越多。为了保证通风系统持续稳定的工作,各需风位置能得到可靠有效的通风,本文采用神经网络算法对通风系统进行可靠性预测,为井下通风管理人员提供一定的通风故障管理依据。
简介:针对无人动力伞在执行任务时常常在低空、城市上空等复杂气流环境飞行,无人动力伞的响应特性受到飞行速度、航向角和各种风的综合影响,具有的非线性和不确定性.导致事先设计的控制规则不再适合,对此基于PID的控制算法难以达到满意的控制效果.本文提出了一种模糊神经网络控制无人动力伞航向控制策略,利用RBF神经网络所特有的局部逼近能力,对模糊控制规则进行在线推理并获得连续输出,采用GA算法对神经网络参数进行调整来实现对模糊控制器规则库的优化和模糊规则的自动生成.使控制器能够进一步适应无人动力伞实时控制中的时变性和不确定性,保持良好的控制性能;仿真表明算法是可行的.