简介:摘要:随着科学技术的发展,人工智能已经被广泛应用到生活中,计算机视觉作为其中的重要领域,也被研究者逐渐重视。本文重点讲述了卷积神经网络以及图像分割的发展史,重点讲述了目前具有代表的deeplab神经网络架构中的特点,分析其中的原理,对后续的研究具有借鉴作用。
简介:摘要:深度学习是人工智能领域的重要研究方向,TensorFlow是目前流行的深度学习框架。首先对TensorFlow框架及其环境搭建进行了介绍,在Tensorflow框架基础之上实现了U-Net网络模型;然后论述了基于该框架的卷积神经网络模型在脑出血CT图像分割中的应用。
简介:ConfigurablemultilayerCNN-UMemulatoronFPGA;Cortically-inspiredVisualProcessingwithaFourLayerCellularNeuralNetwork;Effectofcouplingresistorsonsteadypatternsincoupledoscillatornetworks;Exponentialconvergenceestimatesforneuralnetworkswithmultipledelays;FEATUREEXTRACTIONINEPILEPSYUSINGACELLULARNEURALNETWORKBASEDDEVICEFIRSTRESULTS;FurtherResultsontheStabilityofDelayedCellularNeuralNetworks;Globalstabilityanalysisindelayedcellularneuralnetworks;ImageedgedetectionusingadaptivemorphologyMeyerWavelet-CNN。
简介:ApplyingthegeneticprogrammingtomodelingofdiffusionprocessesbyusingtheCNNanditsapplicationstothesynchronization.Cellularneuralnetworkanditsapplicationinthediagnosisofabnormalautomobilesound.Cellularneuralnetworkinimagefiltrationtasks.Cellularneuralnetworksanditsapplicationforabnormaldetection-optimizationofthecellularneuralnetworksbydesigninganoutputfunction.
简介:摘要目的探索基于多参数MRI的放射组学特征和神经网络模型在区分宫颈癌淋巴结转移的效能。材料与方法回顾性分析178例宫颈癌并提取9个临床及病理特征,经过方差分析进而提取3个特征进入模型。两位观察者分别用软件勾勒得到感兴趣容积,提取到428个放射组学特征。放射组学特征结合临床及病理特征建模:分别组成428维、437维、431维模型。通过Python库的torch和sklearn构建并评价神经网络模型和支持向量机模型。组内相关系数(intraclass correlation coefficient,ICC)来评估观察者之间的信度,使用分类准确率、敏感度、特异度和受试者特征曲线下面积(area under the receiver operating characteristics curve,AUC)用来衡量检测模型性能。使用sklearn中的metrics.roc_curve函数绘制ROC曲线,通过最大约登指数(Youden index)确定最佳界值,并进行诊断效能评估。结果两位观察者ICC为0.819、观察者内ICC为0.796。431维神经网络模型AUC为0.882,在测试集中该模型的分类准确率、敏感度和特异度分别为0.810、0.840和0.741,优于其他模型。结论基于多参数MRI的神经网络模型可有效地预测宫颈癌淋巴结转移。
简介:摘要:本文聚焦于探讨神经网络在图像识别领域的应用。通过对神经网络技术在人脸识别、物体检测与分类、医学图像分析以及场景理解与分割等具体应用案例的深入剖析,揭示其在提升图像识别精度和效率方面的显著贡献。然而,文章也指出神经网络在数据和计算方面所面临的挑战,并探讨未来发展的趋势与方向,这些研究有望进一步推动神经网络在图像识别中的应用和创新。
简介:摘要:卷积神经网络(Convolutional Neural Network, CNN)是近年来在图像识别领域取得重大成就的一种深度学习模型。随着现在数字化工业革命的到来,数字图像的广泛应用,图像识别技术逐渐在计算机视觉领域的研究中逐渐占据越来越重要的地位。图像识别技术,又称为计算机视觉技术,它可以让计算机理解和处理图像,从而实现自动识别、分类、分割、跟踪等任务,逐渐成为热门研究方向,受到研究人员广泛关注。本文首先介绍了CNN的基本结构和工作原理,然后概述了CNN在某些具体领域中的应用。接着,对CNN的发展历程进行总结,并概括了某些改进的方法。为后续对基于卷积神经网络的图像识别相关理论的进一步研究探索提供参考。
简介:摘要:肺炎是一种常见且严重危害人体健康的呼吸系统感染疾病,CT影像不仅能直观地显示病变部位,还可提供诸如病灶形态、密度等信息,在早期发现和治疗过程中发挥着重要作用,也是医生了解病变程度和患病细节的常见手段。在卷积神经网络的基础上,开展肺部病变的判断以及病灶区域的分割定位研究,可以大幅提高诊疗速度,协助医生准确诊断和定位肺炎病变区域。目前的肺炎辅助诊断方法多将分类与分割算法的实施截然分开,区别于目前多将分类与分割算法实施截然分开的肺炎辅助诊断方法,研究了在通用卷积神经网络的基础上完成快速分类任务的实现方法,在专业人士的参与下标注并建立了用于肺炎病灶区域分割的数据集,并利用U-Net及相关改进网络模型,在训练集规模较小的情况下可完整勾勒出肺炎病灶的边缘,并获得到相对较高的分割精度。实验结果表明,通过在所处理的近300张数据集上进行实验,可以得到近85%的准确度。
简介:摘要:随着大数据时代的到来和计算机能力的提升,传统的目标检测方法难以处理庞大的图像数据以及无法满足人们对目标检测精度和速度上的要求,而卷积神经网络具有强大的特征学习能力,突破了传统目标检测方法的瓶颈,基于卷积神经网络的图像目标检测技术在诸多领域掀起了新的应用热潮。首先,文中介绍了卷积神经网络在目标检测任务上的优越性;其次,梳理了基于卷积神经网络的图像目标检测在医学、工业、农业领域中的典型应用,并对其中几种典型卷积神经网络的结构进行归纳总结分析;最后,讨论了目标检测的应用方面仍然存在的问题,并对基于卷积神经网络的图像目标检测应用的未来研究发展方向进行展望。