简介:求出了一些与广义Fibonacci,Lucas数有关的一些倒数级数的值。
简介:记D={(t1,…,tn):(t1,…,tn)∈R+^n且tj=fj(t1,…,tn)为非负单增函数且一阶偏导散均存在(j=k+1,…,n,1≤k
简介:在一般的实Banach空间中,研究Lipsehitz渐近伪压缩映象和渐近非扩张映象不动点的迭代逼近问题,给出Ishikawa迭代序列强收敛的充要条件,所得结果改进和推广了张石生,肖建中等人的主要结果,修正和推广了朱玲娣等人的相应结果.
简介:文[1]中提出了求解连续函数f(x)总体极小值的均值算法,并证明了算法的全局收敛性.若假设f(x)是定义在某可测集G上的可测函数,本文证明了均值算法产生的迭代序列全局收敛到f(x)的本质极小值,若进一步假设函数f(x)满足测度Lipschitz条件,还证明了求可测函数的均值算法是线性收敛的.
简介:在Leslie-Gower捕食模型中引入乘积型Allee效应,并分析模型的性质.首先,模型存在正向不变集,解是一致有界的.其次,讨论了平衡点存在和稳定的条件,并利用Liapunov函数方法得到正平衡点全局渐近稳定的充分条件.最后,根据Hopf分岔定理分析了分岔现象出现的条件和在这个过程中产生的极限环.