简介:提出求解一阶Lagrange力学逆问题的新途径;给出由一阶微分方程直接构造Lagrange函数的基本解法,以及几种与不同的补充条件相对应的特殊解法.举例说明所得结果的应用.
简介:本文中,我们讨论了含参量分数阶微分系统的基本分岔,即跨临界分岔、折叠分岔与音叉分岔.首先,根据分数阶Lyapunov方法,讨论了含参量分数阶微分系统的稳定性,并给出了这些基本分岔的相图.其次,根据Taylor展式与隐函数定理,研究了分数阶微分系统的规范形,从而求出这些基本分岔的拓扑规范形.
简介:正如傅里叶变换采用正弦基,单频信号能够在频域形成峰值,分数阶Fourier变换采用线性调频基,线性调频(LFM)信号能够在分数阶Fourier域上实现聚焦,利用此聚焦性通过搜索峰值可实现LFM信号检测和参数估计.通常采用步进式搜索方法,效率低下.为了克服该缺点,通过对分数阶Fourier域优化问题本质的研究,将混沌优化算法引入到分数阶Fourier域极值搜索中.仿真结果表明:本文的方法优于传统的步进式搜索法.
简介:有限单元法被广泛的采用来描述柔性体的弹性变形,然而有限元节点坐标数目庞大,将会给动力学方程求解带来巨大的计算负担.如何降低柔性体的自由度,是当前柔性多体系统动力学研究的一个重要命题.本文以中心刚体-柔性梁系统为例,采用Krylov方法和模态方法进行降价.然后分别采用有限元全模型、Krylov降阶模型和模态降阶模型,对中心刚体-柔性梁进行刚-柔耦合动力学仿真.仿真结果表明,与采用模态降阶方法相比,采用Krylov模型降阶方法只需要较低的自由度,就可以得到与采用有限元方法完全一致的结果.说明Krylov模型降阶方法能够有效的用于柔性多体系统的模型降价研究.
简介:提出了一个新的四维自治类新混沌系统.首先在整数阶下分析了该系统的基本动力学特性.并利用数值仿真、功率谱分析了当参数固定时,分数阶新混沌系统随微分算子阶数变化时的动力学特性.研究表明:当微分算子阶数为0.85时,分数阶新系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.针对一类结构部分未知分数阶混沌系统,基于Chebyshev正交函数神经网络,稳定性理论[14]和分数阶PI滑模面构造方法设计了一种新型的含有补偿器的自适应非线性观测器,实现了分数阶新混沌系统的投影同步.数值仿真验证了设计方法的有效性.
简介:基于经典的Magnus级数方法提出了一个简单有效的四阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的。
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.