简介:为了对微小型飞行器上的MIMU(微惯性测量单元)的随机漂移进行补偿,在比较了Mallat算法与átrous算法之后,基于小波变换与多尺度分析方法,提出了多尺度时间序列建模方法,它充分利用了átrous算法的快速性与时间平移不变性,将MEMS陀螺仪随机漂移进行多尺度分解。对各尺度上分解得到的信号进行重建,并对重建得到的各个信号进行时间序列建模。将各尺度时间序列模型的预测输出的和作为陀螺仪的随机噪声估计,对陀螺仪的随机漂移进行补偿。最后的实际数据建模表明该建模方法运算量小、建模速度快、精度高、模型适用性强,有很强的实际应用价值。
简介:针对当前行人运动特征监测方案中存在运动信息种类单一、特征提取不完善、识别算法复杂且需要依赖专业检测设备等问题,提出基于智能移动端内置惯性传感器的行人运动特征自动辨识方案,为运动特征识别提供准确多样的运动信息。采集移动端MEMS加速度计输出信息后,分别提取加速度数据的三种时域及频域特征后,通过训练最邻近规则分类器实现行人行走、跑步和上下楼梯运动模式的自动识别。不同年龄不同身高的男女性运动特征提取实验结果表明,基于最邻近规则的移动端行人运动特征辨识方法对4种日常活动的平均查准率和查全率分别达到88.7%和90.3%,对提高微惯性行人导航系统普适性具有促进作用。
简介:在对后向台阶流场进行合成射流激励并研究不同激励频率对流场发展影响的过程中,发现流场在低频激励条件下与中高频条件下表现完全不同.为了详细分析这一现象,使用本征正交分解法(properorthogonaldecom-position,POD)将由PIV方法测得的流速分布数据进行分解,采用相位平均手段对含湍流动能较大的主要模态间的关系进行分析,并使用主要模态对流场的主要运动形式进行还原.结果表明,流场在各条件下的主要运动形式均可用少量低阶模态加以基本概括,低频激励下低阶模态相图近似于Lissajous图形,并描述了剪切层在激励作用下的摆动过程.
简介:传统动基座传递对准主要采用扩展卡尔曼滤波技术。但在动基座传递对准的非线性、非高斯条件下,这种基于模型线性化和高斯假设的滤波方法在估计系统状态及其方差时误差较大且可能发散。混合退火粒子滤波针对非线性、非高斯系统状态的在线估计问题,提出一种新的基于序贯重要性抽样的粒子滤波算法。在滤波算法中,用状态参数分解和退火系数来产生重要性概率密度函数,此概率密度函数综合考虑了转移先验、似然、噪声的统计特性以及最新的观察数据,因此更接近于系统状态的后验概率。实验仿真结果表明,这种基于混合退火粒子滤波器不仅比扩展卡尔曼滤波提高了传递对准的精度,而且又比传统的粒子算法减少了时间。
简介:文章从静力和动力学的角度简要回顾了关于沿内角的自发毛细流动研究的最近进展.作为一个通用几何形状,内角在地面微观尺度下或处于失重状态的航天飞行器系统内大尺度下为液体提供有效的输运通道.当一定的几何条件得到满足并且当毛细力远远大于体力比如重力的时候,沿着内角会发生自发毛细力驱动流动现象.从静力学的角度来说,本文讨论的自发毛细驱动流动和当特定的边界条件发生突然变化,比如重力作用突然消失时带有内角的容器内部单值有限高度的平衡自由面的非存在性有关系.Concus-Finn方法可以用来确定这样的平衡自由面在一个横截面处处一致的柱形容器内的非存在性.用这个方法可以推导出在失重状态下一个内角为2α的通常柱形容器里,当接触角小于π/2-α时,平衡曲面不存在.通常来说,沿内角的自发毛细驱动流动属于层流.利用尺度分析和摄动法,成功分析了该流动的动力学特性,并且推导出对设计有用的封闭形式的解析解.一个典型的结果是在黏性流的范畴里毛细面端点的移动和t~(1/2)成正比.
简介:为了最大限度克服微机电陀螺的两个模态的相互耦合作用,提高微机电陀螺的综合性能指标,采用国内现有MEMS标准工艺方法,设计和制作了一种高性能单晶硅对称解耦结构的线振动陀螺。采用对称结构形式和保证陀螺驱动和检测模态振型都是弯曲振动模式,易于模态匹配;由于采用驱动模态和检测模态结构解耦方式,从微结构设计上大大降低了正交耦合误差影响,使陀螺具有输出零位小、零偏稳定性好的优点。测试结果表明:初次加工的样机,在大气中驱动和检测模态固有频率分别在2430Hz和2580Hz左右,在150Hz带宽内具有0.1~0.5(°)/s的分辨率;随着加工精度的提高和检测电路的改进,该陀螺在大气中15Hz带宽内实现0.008(°)/s的分辨率,在真空状态下,这种高性能单晶硅对称解耦结构的线振动陀螺性能会有进一步的提高。
简介:提出一种用MEMS(微机电系统)惯性元器件(微机械陀螺和加速度计)代替传统的惯性元器件组成惯性辅助导航系统这种新方法,提供给EOANS(光电测距系统)所需要的导航参数,用于进一步的测距计算。由于MEMS系统本身的结构特点,这种新的测距系统体积小、造价低,能够广泛应用于制导等领域。文中最后还给出了仿真试验的数据,结果表明该方法能保证整个测距系统的可行性。
简介:针对线性高斯系统的平滑问题,分析了RTS固定区间平滑与双滤波器固定区间平滑两种算法,提出了一种滤波存储数据更少的RTS平滑新算法.结合平面内的运动追踪问题,基于二维CWPA模型,仿真分析了卡尔曼滤波、RTS固定区间平滑以及双滤波器平滑算法的估计性能.仿真结果表明,两种固定区间平滑算法的估计效果等效,精度均优于卡尔曼滤波,对于实际问题中固定区间平滑算法的选用具有一定的参考价值.最后,结合双滤波器结构提出了一种基于双平滑器的舰载武器惯导传递对准精度评估方法,结果表明新方法相比于单一的平滑算法,可以获取更优的综合平滑性能,特别提升了水平姿态对准误差的平滑估计性能.
简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。
简介:气动声学的声比拟理论以密度、声压等标量为波动算子变量,建立非齐次波动方程,描述流体运动及与边界作用诱发声音的辐射,但标量无法直接描述声能量的传播过程和途径.在流体力学研究中,标量用于描述当前当地的物质状态,而矢量用于描述质量和能量的传输.借鉴上述思想,开展了矢量气动声学的研究,概述矢量气动声学的理论研究进展及应用,主要包括:(1)以声粒子速度为变量,采用声比拟理论的思想直接从Navier-Stokes方程出发推导建立了气动声学的矢量波动方程及两种频域解;(2)综合利用声压和声粒子速度的积分解,直接求解声源周围的瞬时和有功声强矢量场,直观显示声能量的传播途径,应用于旋转声源辐射声能量的传播分析,揭示了亚音速旋转声源辐射声能量的3种传播模式:螺旋模式、声学黑洞模式和R-A模式;(3)采用球谐级数展开方法建立旋转点/紧凑声源辐射噪声的声压和声粒子速度的频域解析解,在此基础上推导了声功率谱的频域解析解,建立了识别旋转叶片声源在空间域和频域分布特征的方法;(4)综合利用矢量气动声学方法和等效源方法,显示声源和散射边界周围声强矢量场的分布特征和能量传播途径,直接揭示了阻抗边界主要的吸声位置以及直接计算得到阻抗边界的吸收声功率.
简介:采用卡尔曼滤波方法进行动基座对准过程中,载体挠曲运动等因素会导致系统噪声、量测噪声的不确定性,即系统参数的不确定性。将多模型估计理论应用于捷联系统动基座对准过程中,可以有效抑制系统不确定性因素的影响。建立了捷联惯导系统误差模型和引入外部位置、速度信息的量测模型,针对对准过程中系统噪声和量测噪声不确定的情况建立了多模型自适应估计器。在同等条件下进行了单一模型对准和利用多模型估计理论进行对准的仿真比较,结果显示:基于多模型估计的对准完成后捷联系统具有更高的导航精度;由此说明,动基座对准过程中,系统参数不确定的情况下,多模型估计器有更好的适用性。
简介:针对无人运载器的快速定向需求,提出北斗双天线基线连续旋转整周和0°-180°两位置的两种快速定向方法。把一对北斗天线安装在一个旋转机构上,使双天线基线绕旋转机构中心轴转动,改变北斗双天线基线方向,运用卫星载波相位双差模型,计算出载波相位双差的整周模糊度,进而获得双天线基线航向角,通过旋转机构角度输出值,得到载体的真实航向。采用自行研制的旋转试验装置,验证了北斗短基线双天线两种旋转定向方法。对于0.3m北斗短基线双天线,载体定向精度优于1°。当北斗双天线接收机能够接收到4颗卫星时,上述两种方法都能够确定真实航向。与商业OEM定向板卡相比,所提出的定向方法定向速度快,定向精度高。
简介:为了实际实现具有良好跟踪精度和抗干扰能力的惯性平台稳定回路,建立了平台伺服电机的离散时间模型,设计了由单片机和高速DSP组成的数字控制系统,与惯性平台组成了基于采样数据的平台稳定控制回路,研究了离散变结构控制趋近律的选取方法,采用改进趋近律设计了离散变结构控制律,提出了一种数字式平台稳定回路的离散变结构控制方法,通过实物实验得出了平台伺服电机转轴摩擦力矩模型系数的估计值,并将其引入到控制系统中。仿真实验结果表明,该回路系统对于摩擦力矩和系统参数不确定性具有一定的抗干扰性能,对于阶跃干扰力矩输入具有良好的动态特性,且静态力矩刚度提高到1.2×10^4N·m/rad,系统对于斜坡和加速度输入信号实现了平稳跟踪,跟踪误差最大值分别为0.0056rad和0.0597rad。