简介:针对单一图像源下目标跟踪精度不高的问题,利用跟踪状态下的目标存在于可见光与红外图像中的特征对连续自适应均值移动跟踪算法做出改进。首先选取可见光图像的“颜色梯度背投影”作为改进的目标模型,选取红外图像的“灰度梯度背投影”作为改进的目标模型;然后根据可见光序列图像和红外序列图像各自进行连续自适应均值移动跟踪算法得到的对应的口‘系数判定两种图像跟踪的效果,对两种图像的权重进行自适应调整,得到这两种图像的特征级融合图像和跟踪结果。实验结果表明,对于320像素×240像素的可见光和红外图像,基于可见光与红外图像特征融合的目标跟踪算法在复杂背景下能够较准确的跟踪目标,目标跟踪精度为0.5像素,跟踪速度为30~32ms/帧。
简介:移动机器人的目标检测要求其对特定的静止或运动物体进行运动分析及检测。以Voyager-III移动机器人系统为研究对象,实现非理想光照下,对橘红色目标足球的运动检测。提出在传统三帧差分法基础上,先利用Markowitz投资组合模型进行足球目标的特征提取,将场地非感兴趣的目标中,出现全部像素值发生变化的目标去除,再进行图像帧间差分。利用CCD摄像机对比赛环境中足球的运动轨迹进行录制,选取具有代表性的各帧视频图像、Markowitz算法优化后的差分图像和跟踪图像,结果表明跟踪图像不含非目标物的干扰,克服了差分图像存在空洞的问题,为移动机器人提供了一种实用的运动目标检测方法。
简介:导航雷达在采集、传输和显示过程中,由于多种因素的影响导致最终形成的图像中舍有大量的噪声,影响了使用者对导航信息的分析和应用。传统的雷达图像去噪算法大多采用小波变换,但这种方法存在边缘模糊等问题。为了去除导航图像的噪声并解决小波变换中存在的边缘模糊问题,本文提出用基于多尺度几何变换的图像去噪方法对导航雷达图像进行处理,并利用基于多尺度几何变换的方法(包括基于Curvelet系数维纳滤波去噪方法和基于Contourlet域去噪方法)和基于小波变换的BayesShrink方法分别对含有模拟杂波和噪声的导航雷达图像进行仿真实验。实验结果表明:与基于小波变换的图像去噪方法相比,基于多尺度几何变换去噪方法能够更加有效去除雷达杂波和噪声。
简介:由于GPS和无线电信号在水下衰减很快而无法使用,因此以惯性导航为核心,加以其它声学辅助导航设备的组合导航系统正适合水下航行器的使用环境。以捷联惯性系统/超短基线/多普勒测速仪/磁航向仪组合导航系统为研究对象,给出了联邦滤波结构,并利用X^2残差检测法诊断出子系统的故障并进行系统重构从而不影响系统性能,最后对组合系统进行了仿真,成功检测出了超短基线系统定位故障并及时进行了隔离。姿态误差和速度误差在故障发生和消失时刻由于系统重构有轻微跳动,其它时刻均保持较高精度,当故障消失时位置误差又恢复到正常量级(5~10m)。仿真结果表明,所提出的SINS/水下声学辅助设备组合导航系统能够提供水下航行器精确的速度、姿态及位置信息,并能够正确及时检测并隔离故障。
简介:针对声矢量传感器姿态变化难以准确测量导致目标测向精度低的现状,设计一种微型MEMS姿态传感器,并将其封装在声矢量传感器内部,实现基于MEMS姿态传感器的声矢量传感器设计。首先根据声矢量传感器姿态测量与校正原理,采用四元数姿态解算方法及扩展卡尔曼滤波器设计MEMS姿态传感器,并对其进行姿态精度测试;然后基于MEMS姿态传感器进行声矢量传感器样机设计、制作、参数测试;最后对样机进行了海上实验,结果表明,通过姿态校正后声矢量传感器目标方位估计精度与GPS推算方位精度一致,验证了利用MEMS姿态传感器设计声矢量传感器的可行性。