简介:Let0<p≤1andwintheMuckenhouptclassA1.Recently,byusingtheweightedatomicdecompositionandmolecularcharacterization,Lee,LinandYang[11]es-tablishedthattheRiesztransformsRj,j=1,2,···,n,areboundedonHwp(Rn).InthisnoteweextendthistothegeneralcaseofweightwintheMuckenhouptclassA∞throughmolec-ularcharacterization.Onedifficulty,whichhasnotbeentakencarein[11],consistsinpassingfromatomstoallfunctionsinHwp(Rn).Furthermore,theHwp-boundednessofθ-Calderón-Zygmundoperatorsarealsogiventhroughmolecularcharacterizationandatomicdecomposition.
简介:许多常微分方程教材关于解的整体连续依赖性的讨论都用到了一个“紧性”事实:欧氏空间中的紧集上一个局部Lipschitz函数一定在该紧集上是全局Lipschitz的.然而这一事实在教学中并非显然,不少学生在试图给出证明时都走入了一个误区.本文对这一问题从正反两方面进行了讨论.
简介:讨论了Dirichlit空间上Toeplitz算子的紧性,特别地得到了Schatlen类Toeplitz算子的特征,此外,还证明了关于Toeplitz算子的一个非稠密性定理,并证明一个非零的函数可以诱导一个零算子,这与Hardy空间及Bergman空间情形是一重大差别。
简介:一、一元选择题(每小题3分,共45分)1.方程3x2-4=0的一次项系数是( )(A)-4 (B)0 (C)1 (D)3图A-82.如图A-8,在Rt△ABC,∠C=90°,那么ctgB=( )(A)ACBC (B)BCAB(C)ACAB (D)BCAC3.已知k是不等于零的常数,在下列函数中,一次函数是( )(A)y=kx2+1 (B)y=xk+1(C)y=k+1x (D)y=kx+14.△ABC的外心是三角形的( )(A)三条高的交点(B)三边的垂直平分线的交点(C)三条内角平分线的交点(D)三边上的中线的交点5.在函数y=-x-3中,自变量x的取值范围是( )(A)x<3 (B)x>3
简介:一、判断题(每小题1分,共10分)1.整数和分数统称有理数.( )2.设甲数为x,若乙数比甲数的一半小2,则乙数是12(x-2).( )3.若a、b互为相反数,则13(a-b)=0.( )4.若a>0,b<0,则1a>1b.( )5.没有最大的负数.( )6.两个有理数的差一定小于被减数.( )7.任何有理数都有倒数.( )8.两个有理数的和与积都是正数,则这两个数必都是正数.( )9.如果(-x)2=9,那么x=3.( )10.一个数的平方一定是正数.( )二、填空题(每小题2分,共20分)1.-35的相反数是,-23的倒数是.2.x的平方与y的倒数的和表示为.3.绝对值是5的数是,平方得2
简介:对[0,2π]年的区间I,对它的左右两个半区间L,R,定义一种加权原子形如b(t)=1/(p(t))[X1-XR(t)],其中ρ为满足某些性质的非负函数,加权原子b(t)的线性组合构成加权原子空间B(ρ),本文证明了如果f∈B(ρ),则f的Fourier级数的Cesaro平均几乎处处收敛。
简介:一、判断题(每小题1分,共8分)1.a的平方与8的差的7倍写成7a2-8.( )2.(a2+b2)+ab叙述为:a、b两数和的平方与a、b两数积的和.( )3.-13的相反数的倒数是3.( )4.如果a是一个有理数,那么-a一定是个负数.( )5.在数轴上与原点的距离越远的点表示的数不一定越大.( )6.近似数3.8万是精确到千位的数.( )7.在有理数范围内a2≥1a2一定成立.( )8.两个相反数的和除以它们的积,所得的商等于零.( )二、填空题(每小题2分,共20分)1.12(a+5)用语言叙述为:.2.非负数集合中,最小的数是,最大的数是.3.数轴上A点表示-3,则距A点5个单位长度的
简介:讨论单位圆盘中Dirichlet空间上Toeplitz算子的性质,给出了Dirichiet空间上以一类连续函数为符号的Toeplitz算子满足亚正规性的充分必要条件.
简介:研究了调和Dirichlet空间上调和符号的小Hankel算子的乘积,给出了此类小Hankel算子交换性和乘积为零的完全刻画.