简介:采用无压熔渗工艺制备1种新型的具有自润滑耐磨性能的炭纤维整体织物/炭-铜(C/C-Cu)复合材料,分别在环-块运动模式、销-盘运动模式和往复运动模式下对该材料的摩擦磨损特性进行研究,并与粉末冶金方法制备的滑板用C/Cu复合材料进行性能比较。结果表明:C/C-Cu复合材料在不同试验模式下表现出迥异的摩擦磨损特性。往复运动模式下试样表面形成完整光滑的磨屑层,摩擦因数和磨损量均分别维持在0.02和1.70mm3的较低水平,摩擦磨损性能优于C/Cu复合材料;环-块模式下试样磨损面粗糙,摩擦因数最高,达到0.25以上,磨损量最低,仅为0.75mm3与C/Cu复合材料的摩擦磨损性能相当;销-盘模式下试样的磨损量远高于其它2种摩擦模式,最高达55mm3,摩擦磨损性能比C/Cu复合材料差。
简介:在经过碱热处理的纯钛表面采用溶胶.凝胶法和提拉涂覆法制备含氟羟基磷灰石(FHA).锶取代羟基磷灰石(SrHA)~相生物陶瓷涂层。采用X射线衍射检测涂层的相组成,采用扫描电镜观察涂层的形貌,采用划痕法测定涂层与基体的结合力。结果表明:所制备的涂层是均匀和致密的FHA—SrHA双相涂层;与单相FHA和SrHA涂层相比,FHA.SrHA双相涂层与钛基体的结合力明显优于SrHA涂层,略低于FHA涂层;TRIS溶液中的溶解性实验结果显示3种涂层均发生溶解和钙磷酸盐的重沉积过程,表现出良好的生物活性,但FHA.SrHA双相涂层的溶解速率远远低于单相FHA及SrHA涂层,这表明可以通过双相涂层设计来提高生物陶瓷涂层材料的植入寿命和稳定一陛。
简介:采用铸锭冶金法制备含稀土元素Pr的Al-Zn-Mg-Cu-Zr合金,并通过金相分析以及拉伸性能、晶间腐蚀和剥落腐蚀性能的测试研究价格相对低廉的Pr对Al-Zn-Mg-Cu-Zr合金显微组织、力学性能和腐蚀性能的影响。结果表明,添加稀土元素Pr能影响合金铸态组织中第二相的析出,并显著抑制合金在变形和热处理过程中再结晶的发生,在保持合金的强度及弹性模量的同时,改善合金抗晶间腐蚀和剥落腐蚀的性能,并提高合金的塑性。
简介:以Cu-Zr混合粉末为熔渗剂,密度为1.4g/cm3的多孔C/C复合材料为坯体,采用反应熔渗法制备C/C-ZrC-Cu复合材料,研究了复合材料的组织结构及物相组成,并对复合材料组织结构的形成机理进行了分析。结果表明:熔渗剂中Zr含量不同时,制备的复合材料均主要由C,ZrC和Cu相组成。随熔渗剂中Zr含量由50%增加到70%(质量分数),制备的复合材料中Cu含量逐渐降低,熔渗剂中Zr含量为60%时复合材料中ZrC含量最高(43.2%)。C/C复合坯体内的孔隙被反应生成的ZrC相及残余Cu相充分填充,炭纤维周围存在一层较致密的ZrC层,在远离炭纤维处,ZrC颗粒与Cu相呈混合分布状态。ZrC与C和Cu均有良好的界面结合状态,在ZrC颗粒长大和粗化过程中,形成了部分含内嵌Cu晶粒的较大ZrC颗粒。
简介:采用非水溶液溶胶-凝胶法,并结合高温碳热还原法制备锂离子电池用高可逆容量的Sn-C复合负极材料,通过调节Sn源与炭源的比例及碳热还原过程中的升温制度来控制金属Sn的粒度和Sn-C复合材料的结构形态。借助XRD、EDS、SEM、循环伏安及恒流充放电测试对材料的物化性能进行表征。结果表明,当Sn源与C源质量比为80:20、还原温度为800℃时,纳米级金属Sn均匀紧密地分布在无定形热解炭基体中,形成良好的纳/微复合结构,此时复合材料性能相对最优;该复合材料在电流密度为100mA/g,首次可逆比容量为637.9mAh/g,循环30次后充电容量保持在372.5mAh/g以上,第二次循环库伦效率达到97%以上。
简介:用柠檬酸溶胶-凝胶工艺制备出了LiV3O8化合物,并检测了其作为热电池阴极材料时的放电性能,干凝胶210℃焙烧所得的粉末颗粒疏松多孔,300℃时可变成结晶岩状,低温焙烧时出现了Li0.3V2O5和LiV2O5相,经650℃长时间保温后可转变为LiV3O8,模拟Li-B/LiCl-KCl/LiV3O8(或V2O5)热电池500℃放电试验表明,LiV3O8因具有良好的电子导电体和较低的Li+扩散极化,其放电较V2O5平稳,虽峰值电压略有降低,但可利用的比容量(电压降至峰值电压的75%或2.0V)均不低于V2O5;LiV3O8中掺入8%的P2O5时可提高小电流放电时的电压。
简介:以水热共还原法制备纳米W-30%Cu复合粉末,通过真空烧结和包套热挤压制备超细晶W-Cu复合材料,并进行后续热处理。采用X射线衍射、高分辨率透射电镜、扫描电镜等观察和分析W-30%Cu复合粉体和合金的成分及组织形貌,研究热挤压及后续退火处理对材料致密度、电导率和硬度等性能的影响。结果表明:水热产物为纳米级(10~15nm)规则的类球形结构,经煅烧及共还原后得到的W-30%Cu复合粉末粒度细小,呈特殊的W包覆Cu结构,颗粒分布均匀;复合粉末在1050℃真空烧结后相对密度只有91.5%,经热挤压后致密度提高到97.07%,布氏硬度达到223,组织细密,W相和Cu相分布均匀,钨颗粒细小(1~3μm),形成典型的钨骨架和铜网络结构。经过后续的退火处理,钨铜分布更均匀,钨粒径进一步减小,材料的致密度和电导率都更高,分别为98.82%和43.31%IACS,形成良好的综合性能指标匹配。
简介:用C3H6作为碳源气,Ar作为稀释气体和载气,TaCl5为钽源,采用化学气相沉积法(chemicalvapordeposition,CVD)在高纯石墨表面制备TaC涂层。采用X射线衍射(XRD)和扫描电镜(SEM)等对涂层进行表征,研究1000℃下稀释气体(Ar)流量对TaC涂层成分、织构及表面形貌的影响。结果表明:随着稀释气体流量增大,表面均匀性和光滑度提高,晶粒尺寸减小,晶体择优取向降低,沉积速率减小,涂层中C含量增多。当稀释气体流量为100mL/min时,TaC涂层晶粒尺寸与沉积速率分别为32.5nm和0.60μm/h;而当稀释气体流量增大到600mL/min时,涂层晶粒尺寸与沉积速率分别下降到21nm和0.25μm/h。
简介:利用分离式Hopkinson压杆(splithopkinsonpressurebar,简称SHPB)技术对T6时效态2195铝锂合金帽型试样进行动态加载获得绝热剪切带(adiabaticshearband,ASB),利用透射电镜(TEM)和光学显微镜(OM)观察动态加载前后剪切带的微观结构特征,利用电子背散射衍射(EBSD)分析合金在100~400℃温度下退火后绝热剪切带微观结构的变化,研究剪切带内纳米结构的热稳定性。结果表明:在动态加载过程中,帽型试样的剪切区域形成绝热剪切带,剪切带内的晶粒为50~100nm左右的纳米等轴晶,在绝热剪切形变过程中析出相已完全溶解于基体中,纳米晶内部和晶界不存在析出相。在不同温度下退火时,剪切带内的晶粒随温度升高而长大,100~200℃温度下退火后晶粒未发生显著长大,在300℃退火后晶粒急剧长大到0.22μm,400℃退火后晶粒尺寸为1.77μm;在300℃左右温度下剪切带的硬度显著下降,此温度正是剪切带内纳米晶粒急剧长大的临界温度。
简介:采用熔体快淬法制备FeSiAl快淬带料;利用行星式高能球磨工艺进行扁平化处理;使用真空管式炉进行氢还原退火处理;采用SEM、PPMS表征试样的形貌及室温磁滞回线;使用矢量网络分析仪测量试样在10~100MHz频段的复磁导率;采用抗干扰性能测试系统测量表征磁片抗干扰的标签读写距离;研究影响FeSiAl粉体材料磁性能的主要因素,并分析了其作用机理。结果表明,采用高低速两步法高能球磨处理,能有效提高薄片状FeSiAl材料的径厚比;氢还原退火处理能有效提高饱和磁化强度和磁导率,降低矫顽力和磁损耗;制备的片状FeSiAl材料在13.56MHz频率附近具有优异的近场通信抗电磁干扰性能。
简介:采用冷等静压法(coolisostaticpressing,CIP)制得大尺寸钼骨架,对骨架进行渗铜制备Mo-30Cu合金,并在350℃进行温轧,研究CIP压力及熔渗温度和熔渗时间对合金致密度的影响以及合金的轧制性能。结果表明:采用冷等静压法在120~180MPa压力下可制备孔隙分布均匀,无分层等缺陷的钼骨架,熔渗后坯料的线收缩率随CIP压力增加而逐渐降低,最佳CIP压力为160MPa;在一定范围内升高熔渗温度与延长保温时间均有助于提高合金致密度;冷等静压–溶渗法制备的高致密Mo-30Cu合金具有较好的温轧性能,有效提高了大尺寸试样的加工性能。CIP压力为160MPa压制的骨架在1350℃渗铜6h后相对密度达到99%以上,合金的温轧变形量可达到65%。
简介:采用粉末冶金法制备Cu/V0.97W0.03O2复合材料,通过场发射扫描电镜及能谱分析研究复合材料的表面形貌与成分组成,用X.ray衍射分析复合材料中各相在室温下的晶体结构,并利用涡流电导仪测试在变温过程中不同V0.97W0.03O2粉体含量的复合材料电导率的变化情况。结果表明:Cu/V0.97W0.03O2复合材料在0℃附近表现出电导率突变的特性,而且随复合材料中V0.97W0.03O2粉体添加量的增加,复合材料电导率突变的效果明显增加;同时,在室温下Cu/V0.97W0.03O2复合材料中V0.97W0.03O2的晶体结构与V02高温相的结构基本相同,说明在复合材料的烧结过程中Cu与V0.97W0.03O2的晶体结构没有相互影响,但V0.97W0.03O2有少量发生分解。
简介:以不同纤维体积分数(21%、26%、32%)、不同布毡质量比(3:1,2:1,1:1)的针刺整体毡为预制体,采用化学气相渗透法(Chemicalvaporinfiltration,CVI)制备平板炭/炭(C/C)复合材料,研究预制体结构对CVI致密化过程的影响。结果表明:随纤维体积分数增加,整体毡的增密速率及最终密度都逐渐减小;布毡比对增密速率及最终密度影响很小。材料网胎中热解炭圆壳厚度沿材料厚度方向呈内部小、两侧大的对称分布;增加纤维体积分数或增加布毡比,材料内部的热解炭增厚程度随之减小。纤维体积分数为21%的预制体最适宜采用CVI工艺进行增密,增密80h密度达到1.69g/cm3,热解炭生长均匀。
简介:采用天然岫岩玉和人工合成含镧化合物为原料,通过高能球磨制备粒径小于2μm的镧/蛇纹石复合粉体,分析该复合粉体的热力学及结构稳定性,评价其作为润滑添加剂的摩擦学性能,并探索其减摩抗磨机理。结果表明:镧的加入能降低蛇纹石微粉的热力学及结构稳定性,使蛇纹石的羟基脱除速率更快、反应更彻底。复合微粉较单一的蛇纹石微粉具有更好的减摩抗磨性能,在CD15w/40柴油机润滑油中添加0.5%的镧/蛇纹石复合微粉时,摩擦因数和盘片磨损体积分别较基础油降低约34.2%和68.8%;磨损表面致密光滑,复合粉体颗粒直接参与摩擦界面复杂的物理和化学作用,诱发形成富含Si-O结构的氧化膜,该氧化膜与有机残留物产生正协同作用,提高摩擦副的磨损抗力及润滑性能,显著降低摩擦磨损。
简介:以微米级蓝钨(WO2.9)、四氧化三钴(Co3O4)和炭黑(C)为原料,采用真空原位还原碳化反应制备超细WC-Co复合粉末,经过真空烧结得到WC-Co合金块体。利用扫描电镜、X射线衍射仪观察和分析复合粉末及合金显微形貌及物相组成,研究原料粉末中配碳量对WC-Co复合粉及合金物相与力学性能的影响。结果表明:所得平均粒径为300nm的超细WC-Co复合粉末的主相均为WC和Co相,含有少量的η相(Co3W3C);原料粉末中配碳量(质量分数)为16.69%较为合适,此时可获得物相纯净、平均晶粒尺寸470nm的超细晶WC-Co硬质合金,合金的横向断裂强度为2464MPa;原料粉末中配碳量为16.85%时,合金中存在少量的游离碳,横向断裂强度只有1946MPa。
简介:以热模拟实验为基础,建立固溶态GH4169合金的动态再结晶模型,应用DEFORM-3D有限元软件模拟圆柱状试样在不同压缩变形条件下的动态再结晶体积分数分布;结合金相定量分析、电子背散射衍射(Electronbacksatterdiffraction(EBSD))分析及有限元模拟结果,对比研究变形参数对圆柱状GH4169合金心部微观组织的影响。研究结果表明:升高变形温度及降低应变速率,均可促进圆柱状GH4169合金热模拟压缩试样变形的均匀性;应变速率的降低可加速GH4169合金中小角度晶界向大角度晶界的转变过程;GH4169合金的动态再结晶形核机制为以原始晶界为主的非连续动态再结晶,在试验变形条件下,孪晶界的演化对动态再结晶过程起重要作用;同时,分析实验结果与模拟结果之间的差异及其原因。