学科分类
/ 1
4 个结果
  • 简介:基于分散化滤波算法和信息分配原理,建立了广义联邦滤波器设计理论.证明了联邦滤波器当其主滤波器和局部滤波器的维数都相同时,其全局滤波和集中卡尔曼滤波等价,是最优的;同时提出当主滤波器维数和局部滤波器维数不相同时,达到全局滤波最优的解析补偿方法,其附加计算量小,并可作为一种性能指标用于子系统的软故障检测.在组合导航系统中运用此方法对非公共状态信息进行补偿,仿真结果验证了该方法的有效性.

  • 标签: 联邦滤波器 全局最优性 信息分配 组合导航系统 软故障 滤波算法
  • 简介:以车载微惯性测量单元/GPS/地磁系统为研究对象,构造一类模糊广义径向基函数网络辅助滤波器,完成对基于EKF的非线性导航滤波解算,以提高导航系统参数估算精度和系统动态性能。相同条件下的仿真表明,对比标准EKF和模糊广义径向基函数网络辅助滤波方法,采用后者获得的导航参数误差均方差小,统计特性好,对姿态、航向角误差的最优估计分别控制在0.2°和0.4°以内。导航解算对微惯性测量单元误差在一定范围内的变动不敏感,保证了测量的精度。

  • 标签: 模糊径向基网络 微惯性测量单元 紧耦合 辅助滤波 组合导航系统
  • 简介:广义系统故障诊断过程中,若系统动态模型中存在不确定性,传统的无迹卡尔曼滤波算法将失去其传感器故障估计精度。为解决该问题,提出一种改进的强跟踪卡尔曼滤波算法以实现广义连续-离散系统的传感器故障诊断及隔离。首先,提出基于多重渐消因子的强跟踪滤波算法以实现动态模型存在不确定性广义连续-离散系统的故障诊断;然后提出一种结合多模型自适应估计的强跟踪卡尔曼滤波(STUKFMMAE)算法以实现传感器故障的有效隔离。最后,针对基于广义连续-离散系统的惯性传感器故障模型提出仿真算例。仿真数据表明,传统无迹卡尔曼滤波对于传感器故障估计误差为0.002左右,而提出的基于多重渐消因子的强跟踪滤波算法对于传感器故障估计误差最大值为未超过4×10~(-4),且STUKFMMAE相较于UKFMMAE算法具有更好的隔离效果。仿真结果验证了设计方案的有效性。

  • 标签: 广义系统 连续-离散系统 故障诊断及隔离 多模型自适应估计 强跟踪卡尔曼滤波
  • 简介:多路径误差是北斗导航定位系统高精度动态监测的主要误差源。针对北斗导航定位系统多路径误差的特性,结合广义特征值盲源分离方法的优势,提出一种基于参考信号的广义特征值盲源分离算法来削弱多路径效应的影响。首先将前一天的原始坐标残差序列通过奇异谱分析方法进行去噪,其结果作为初始参考信号;然后将当天的原始坐标残差序列进行经验模式分解方法分解,分解得到的IMF分量作为虚拟观测数据,利用广义特征值盲源分离算法获取当天多路径误差信号;最后,利用仿真数据和连续10天的实际观测数据进行试验分析,结果表明利用该方法建立的多路径误差改正模型能有效地了削弱多路径的影响,北、东、天三个方向精度分别提高了78.8%、35.3%、90.1%。提出的模型在一定程度上解决了固定多路径模型随着时间推移重复性减小且有效性降低的问题。

  • 标签: 经验模式分解 广义特征值 盲源分离 多路径误差 北斗定位系统 动态监测