简介:关于凸函数局部有上界和函数Lipschitz连续性的等价性已经被多次研究过,但是这些研究都未曾涉及凸函数的Lipschitz连续性与函数有下界的关系.本文利用Hamel基构造了一个反例,说明了即使凸函数在全空间有下界也不能得到函数的Lipschitz连续性.接着,在空间完备的情形下,运用Baire纲理论证明了,函数在某一球型邻域内均下半连续等价于函数的Lipschitz连续性.
简介:给出了一类特殊的广义deBruijn有向图的支撑树与欧环游的数目的简洁表示式,并得到了广义deBruijn有向叠线图的支撑树与欧拉环境数目的计算公式。
简介:本文将文献中的求解二维的有交界面的椭圆型方程的浸入界面方法推广到界面及间断条件都由定义在界面某个邻域的网格函数点上的函数隐式提供的情形,给出了一种间断条件捕捉格式。它特别适合干隐式界面跟踪法如水平集方法。对原浸入界面方法中的界面间断关系,确定不规则点差分格式的系数的代数方程组和修正项都针对新的情形进行了相应的修正。该格式利用标准的二阶拉格朗日插值计算间断函数沿界面的导数,避免了文献中的用样条函数的局部界面重构,易于执行。数值计算验证了该法的关于最大模的二阶收敛性。