简介:失效率是工程中最常用的可靠性指标,传统方法需要通过失效观测数据统计得出。本文根据失效是载荷与强度相互作用结果的观点,借助于动态的(与载荷作用次数有关的)载荷-强度干涉关系,推导出了失效率函数预测模型,并且从载荷分布与强度分布及其之间的关系解释了产品服役过程中失效率的变化规律,展示了载荷的分散性和强度的分散性对失效率曲线形状的影响,提供了一种借助于数学模型预测产品失效率的方法。
简介:古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。
简介:基于柯布-道格拉斯生产函数与自回归移动平均模型(ARIMA)构建出一个GDP综合预测模型,并且考虑十九大全面建成小康社会与实现共同富裕的精神与国家关于技术、资本、劳动力等方面的区域平衡发展战略调整模型的参数,计算了2016-2050年中国分省的GDP总量与人均GDP,进一步通过计算省区间人均GDP的基尼系数来分析省区协调发展的水平。研究结果表明,在考虑省区协调发展时,各省区在2016-2050年间的GDP总量与人均GDP的差距逐渐缩小,省区间人均GDP的基尼系数将从2015年的0.219下降到2030年的0.176和2050年的0.137,未来区域间发展不均衡的态势在实现经济稳步增长同时可以得到缓解。
简介:桥梁监测序列是典型的非平稳时间序列,需要进行一些处理将非平稳序列平稳化后再拟合ARMA模型。将监测数据平稳化后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型即为ARIMA模型。以玉峰大桥为例,介绍了季节ARIMA模型的建模思路与总体流程,模拟了检测序列的变化趋势。以季节ARIMA模型为预测模型作为结构的退化模型,对测点进行退化趋势模拟与退化临界时刻预测。结果显示ARIMA模型对序列的拟合效果良好,可以用于桥梁监测序列的预测,其对退化临界时刻的预测可以从整体上掌握桥梁的整体退化趋势和极限使用寿命。