简介:本文证明第二种服务可选的M/M/1排队模型的主算子的点谱包含一个区间(-α,0),α〉0.此结果表明该主算子生成的C_0-半群不是紧算子,甚至不是最终紧算子.本文的结果与我们以前的结果合并后得到:(i)该C_0-半群的本质增长界为0.从而,该C_0-半群不是拟紧算子.(ii)该模型的时间依赖解不可能指数收敛于其稳态解.(iii)该C_0-半群的本质谱半径等于1.
简介:把文[1]中结果推广到Reinhardt域D=D(k1k2…kp)包括于C^n(1≤p
简介:设G是一个阶数大于等于4的简单连通图.代4(G)和d4(G)分别表示G的第四大无符号拉普拉斯特征值和第四大度.本文证明了K4(G)≥d4(G)一2.