简介:StabilizedorChebyshevexplicitmethodshavebeenwidelyusedinthepasttosolvestiffordinarydifferentialequations.MakinguseofspecialpropertiesofChebyshev-likepolynomials,thesemethodshavefavorablestabilitypropertiescomparedtostandardexplicitmethodswhileremainingexplicit.Anewclassofsuchmethods,calledROCK,introducedin[Numer.Math.,90,1-18,2001]hasrecentlybeenextendedtostiffstochasticdifferentialequationsunderthenameS-ROCK[C.R.Acad.Sci.Paris,345(10),2007andCommun.Math.Sci,6(4),2008].InthispaperwediscusstheextensionoftheS-ROCKmethodstosystemswithdiscretenoiseandproposeanewclassofmethodsforsuchproblems,theT-ROCKmethods.Onemotivationforsuchmethodsisthesimulationofmulti-scaleorstiffchemicalkineticsystemsandsuchsystemsarethefocusofthispaper,butournewmethodscouldpotentiallybeinterestingforotherstiffsystemswithdiscretenoise.TwoversionsoftheT-ROCKmethodsarediscussedandtheirstabilitybehaviorisanalyzedonatestproblem.ComparedtotheT-leapingmethod,asignificantspeed-upcanbeachievedforsomestiffkineticsystems.Thebehavioroftheproposedmethodsaretestedonseveralnumericalexperiments.
简介:Inthispaper,standardandeconomicalcascadicmultigridmethodsareconsideredforsolvingthealgebraicsystemsresultingfromthemortarfiniteelementmethods.Bothcascadicmultigridmethodsdonotneedfullellipticregularity,sotheycanbeusedtotacklemoregeneralellipticproblems.Numericalexperimentsarereportedtosupportourtheory.
简介:BioscienceMethods(ISSN1925-1920)isanopenaccess,peerreviewedjournalpublishedonlinebyBioPublisher.Thejournalpublishesallthelatestandoutstandingresearcharticles,lettersandreviewsinallareasofbioscience,therangeoftopicsincluding(butarenotlimitedto)technologyreview,techniqueknow-how,labtool,statisticalsoftwareandknown
简介:BioscienceMethods(ISSN1925-1920)isanopenaccess,peerreviewedjournalpublishedonlinebyBioPublisher.Thejournalpublishesallthelatestandoutstandingresearcharticles,lettersandreviewsinallareasofbioscience,therangeoftopicsincluding(butarenotlimitedto)technologyreview,techniqueknow-how,labtool,statisticalsoftwareandknown
简介:BioscienceMethods(ISSN1925-1920)isanopenaccess,peerreviewedjournalpublishedonlinebyBioPublisher.Thejournalpublishesallthelatestandoutstandingresearcharticles,lettersandreviewsinallareasofbioscience,therangeoftopicsincluding(butarenotlimitedto)technologyreview,techniqueknow-how,labtool,statisticalsoftwareandknowntechnologymodification.Casestudiesontechnologiesforgenediscoveryandfunction
简介:CascadicmultigridtechniqueformortarWilsonfiniteelementmethodofhomogeneousboundaryvalueplanarlinearelasticityisdescribedandanalyzed.FirstthemortarWilsonfiniteelementmethodforplanarlinearelasticitywillbeanalyzed,andtheerrorestimateunderL2andH1normisoptimal.Thenacascadicmultigridmethodforthemortarfiniteelementdiscreteproblemisdescribed.Suitablegridtrans-feroperatorandsmootheraredevelopedwhichleadtoanoptimalcascadicmultigridmethod.Finally,thecomputationalresultsarepresented.
简介:Inthepresentpaperweextendthemethodpresentedby0.AxelssonandP.VassilevskicalledAMLPversion(i)ofrecursivelyconstructingpreconditionerforthestiffnessmatrixinthediscretizationofselfadjointsecondorderellipticboundaryvalueproblems.Inourextendedmethodthesystemstobeeliminatedoneachlevelcontainingthemajorblockmatricesofthegivenmatrixcanbesolvedapproximately,whiletheymustbesolvedexactlyintheoriginalmethod.
简介:在这篇论文,我们考虑椭圆形的问题为第二份订单混合了有限元素方法。在最低顺序Brezzi-Douglas-Marini元素的情况中(如果d=2)orBrezzi-Douglas-Duran-Fortin元素(如果d=3)在矩形的平行六面体上,我们证明由合并某些照规则,混合方法系统能作为一个简单、以房间为中心的有限差别方法被写。这导致答案一稀少,positivesemidefinite为未知的数量的线性系统。为一个斜张肌系数,为未知的数量的稀少模式是五个点模板如果d=2,和七如果d=3。为一个一般张肌系数,它是九个点模板,并且十九分别地。是的混合方法实现的应用对的有限差别非等温多相,多,在多孔的媒介的部件流动被介绍。