简介:本文致力于研究非线性中立型延迟积分微分方程隐式Euler方法的收缩性。本文中的Lipschitz数是关于变量t的函数,而不是常数,最终能得到其数值解的结果是收缩的。
简介:IntheprocessofsolvingEulervectorsbasedonGNSShorizontalmovementfield,thenumberofestimatedparameterscanaffectEulervectorresults.Thisissueisanalyzedthroughtheoreticaldeductionandpracticalexampleinthispaper.Firstly,thedifferencebetweentheresultsofEulervectorsindifferentsolvingmodelsisdeduced.Meanwhile,basedonGNSShorizontalmovementfieldintheChinesemainlandfrom2004to2007,twocommonmodels(RRMandREHSM)areusedtodiscusstheimpactofsolvingmodelsonEulervectorsandthefollow-upstudy.Theresultshowsthatthemaximumvalueofthedifferenceinablock’sentirerotationcanreach2.6mm/a,andshouldnotbeignored.Therefore,theresultsofhorizontalmovementaredifferentusingdifferentkinematicblockmodels,andthisshouldbepaidmoreattentionintheanalysisofcrustalhorizontalmovement.
简介:Basedonthetheoryofcalculusofvariation,somesuffcientconditionsaregivenforsomeEuler-LagrangcequationstobeequivalentlyrepresentedbyfiniteoreveninfinitemanyHamiltoniancanonicalequations.Meanwhile,somefurtherapplicationsforequationssuchastheKdVequation,MKdVequation,thegenerallinearEulerLagrangeequationandthecylindricshellequationsaregiven.
简介:Kizmaz[13]学习了差别顺序空格?∞(Δ),c(Δ),和c0(Δ)。几篇文章处理了哪个被围住的m-th顺序差别的序列的集合,对零会聚,或会聚。Altay和Ba?ar[5]并且Altay,Ba?ar,和Mursaleen[7]介绍了Euler顺序空格e(r)0,e(r)c,和e(r)∞分别地。这篇文章的主要目的是介绍空格e(r)0(Δ(m)),e(r)c(Δ(m)),并且e(r)∞(Δ(m))由其m(th)命令差别在Euler空格的所有序列组成e(r)0,e(r)c,和e(r)∞分别地。而且,作者给一些拓扑的性质和包括关系,并且决定空格e(r)的α-,β-,和γ-duals0(Δ(m)),e(r)c(Δ(m)),并且e(r)∞(Δ(m)),并且空格e(r)的Schauder基础0(Δ(m)),e(r)c(Δ(m))。文章的最后节在顺序空间e(r)c(Δ(m)上被奉献给一些矩阵地图砰的描述)。给词调音:顺序m的差别顺序空格;Schauder基础;α-,β-,和γ-duals;矩阵地图砰
简介:对于圆锥型和棱锥型Hamiltonian的Eikonal型方程,本文给出了一种几何方法,得出其初值问题解的表达式并且说明由此式给出的解为原初值问题的粘性解.首先用一个凸函数序列逼近Eikonal型方程中的Hamiltonian,再由Hopf-Lax公式给出方程序列的粘性解,最后证明了该粘性解序列会收敛到Eikonal方程的粘性解.
简介:TheregularsolutionsoftheisentropicEulerequationswithdegeneratelineardampingforaperfectgasarestudiedinthispaper.Andacriticaldegeneratelineardampingcoefficientisfound,suchthatifthedegeneratelineardampingcoefficientislargerthanitandthegasliesinacompactdomaininitially,thentheregularsolutionwillblowupinfinitetime;ifthedegeneratelineardampingcoefficientislessthanit,thenundersomehypothesesontheinitialdata,theregularsolutionexistsglobally.
简介:Inthispaper,theuniquenessofstationarysolutionswithvacuumofEulerPoissonequationsisconsidered.Throughanonlineartransformationwhichisafunctionofdensityandentropy,thecorrespondingproblemcanbereducedtoasemilinearellipticequationwithanonlinearsourcetermconsistingofapowerfunction,forwhichtheclassicaltheory[4]'[9]oftheellipticequationsleadstheauthorstotheuniquenessresultundersomeassumptionsontheentropyfunctionS(x).Asanexample,theauthorsgettheuniquenessofstationarysolutionswithvacuumofEuler-PoissonequationsforS(x)=|x|θandθ∈{0}∪[2(N-2),+∞).