简介:一、遗传算法的发展遗传算法(GeneticAlgorithms简称GA)是由美国Michigan大学的JohnHolland教授于20世纪60年代末创建的。它来源于达尔文的进化论和孟德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。从1985年在美国卡耐基.梅隆大学召开的第一届国际遗传算法会议到1997年5月IEEE的Transactions0nEvo-lutionaryComputation创刊,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。[1]遗传算法是一种自适应全局优化概率搜索算法,主要有以下特点:(1)自组织、自适应和学习性(智能性)。遗传算法消除了算法设计中的一个最大障碍,即需要事先描述问题的全部特点,并要说明针对问题的不同特点算法应采取的措施,因此,它可用来解决复杂的非结构化问题。(2)直接处理的对象是参数的编码集而不是问题参数本身。(3)搜索过程中使用的是基于目标函数值的评价信息,搜索过程既不受优化函数连续性的约束,也没有优化函数必须可导的要求。(4)具有显著的隐并行性。遗传算法按并行方式搜索一个种群数目的点,而不是单点。它的并行性表现在两个方...
简介:摘要:一直以来,由于遗传算法的优异性,被广泛应用在各个领域;本文通过遗传的各个步骤和方法的介绍,便于学者理解,并指出算法的评价指标,为广大学者提供验算标准。
简介:摘要:随着电动汽车规模不断扩大,电动汽车集中充电引发了一系列问题,例如电压质量下降、用户等待出充电时间过长、充电设施建设成本过高等,为解决上述问题,本文提出一种基于大变异遗传算法的电动汽车有序充电控制策略。在保证变压器安全稳定运行的基础上,以电网负荷峰谷差最小和用户充电成本最小为优化目标建立模型。采用大变异遗传算法对模型进行求解,所得结果与无序充电相比负荷峰谷差降低32%,与基于传统遗传算法的电动汽车有序充电控制策略相比峰谷差降低9%。
简介:油藏描述是根据数模参数来描述油藏、以便对其进行动态预测的一种方法。我们介绍了一种采用专用设计的遗传算法来搜索最有可能与油藏的测量结果拟合的油藏描述方法。该遗传算法使用六个染色体来代表不同类型的油藏参数。其中三个染色体具有多维实数结构,而另外三个染色体则为一维二进制数组。创造了专门设计的交换和变异算子与非标准的基因组结构一同使用。该方法在真实、复杂的人造油藏模型上进行了试验,并与模拟退火(SA)算法进行了比较。我们证明,遗传算法能获得比模拟退火算法更好的结果,可与人工计算所能得到的结果相媲美。此外我们还证明,对于算法建立的详细过程而言,遗传算法的性能是稳健的。因为该算法易于进行并行处理,对于被丢失和被破坏的解具有稳健性,且能返回一组良好的解,因此它是自动油藏描述算法中的一种理想方法。