简介:积分的计算有很强的技巧性,有些题目利用一般方法计算很繁琐,甚至有的很难得到正确结果.而恰当地利用被积函数与积分区间的对称性可以使积分计算化繁为简.如此可以达到事半功倍的效果.定理1:设f(x)在[-a,a]上连续,且为奇函数,则∫-aaf(x)dx=0;若f(x)在[-a,a]上为偶函数,则∫-aaf(x)dx=2∫0af(x)dx.此定理的证明许多教材已经给出,在此省略.注:定理中的函数必须是对称区间上的奇、偶函数,才会有定理的结论.例1:计算I=∫-11|x|In(x+(1+x2)1/2)dx解;因为区间[-1,1]为对称区间,且被积函数f(x)=|x|In(x+(1+x2)1/2)为连续的奇函数,所以由定理1,可得I=0.
简介:用牛顿——莱布尼兹公式及换元积分法计算定积分时,首先要验证公式的条件是否被满足,否则将导致计算错误。本文通过实例分析了用以上两个公式计算定积分时易出现的错误,并给出三种正确解法。