学科分类
/ 25
500 个结果
  • 简介:用晶格玻尔兹曼方法真实地再现了空腔流稳定流场的形成过程,将复杂系统模拟方法用于大学物理虚拟实验,有效地给学生创设了建构知识的学习环境,很好地解决了实验教学无法实施的问题。

  • 标签: 虚拟实验 晶格玻尔兹曼方法 空腔流
  • 简介:斯特潘-玻尔兹曼定理是肤色系统中最为重要的定理之一,描述了辐射系统的能量密度和热力学温度之间的关系。同时,在大学物理之中斯特潘-玻尔兹曼定理也有着相当重要的地位。在文中主要就斯特潘-玻尔兹曼定理的简单热力学推导进行分析,希望以此来对斯特潘-玻尔兹曼定理有着更加深刻的认识。

  • 标签: 斯特潘-玻尔兹曼定理 简单热力学 推导
  • 简介:探讨热力学第二定律的玻尔兹曼变形中涉及的若干推导并给出相应的物理解释,揭示熵概念的物理实质。

  • 标签: 热力学 第二定律
  • 简介:摘 要:回顾了卷积神经网络的发展历程,介绍了卷积神经网络的基本运算单元。在查阅大量资料基础上,重点介绍了有代表性的 AlexNet、VGGNet、GoogLeNet、ResNet等,对他们所用到的技术进行剖析,归纳、总结、分析其优缺点,并指出卷积神经网络未来的研究方向。

  • 标签: 卷积神经网络 AlexNet VGGNet GoogLeNet ResNet
  • 简介:摘要:为解决单目图像中冗余像素点不利于深度神经网络快速完成深度信息检测的问题,提出一种基于卷积神经网络深度线段分类算法。对 NYU -Depth 数据集使用线段检测算法进行线段检测得到原始图像的线段特征图。通过数据预处理结合深度数据得到表征深度信息的线段集合及其标签,提出适用于线段特征的卷积神经网络,实现单目图像中深度线段的分类。本论文从不同方面阐述基于卷积神经网络深度线段分类算法,希望为研究卷积神经网络的专家和学者提供理论参考依据。

  • 标签: 卷积神经网络 深度线段分类 算法
  • 简介:本文以玻尔兹曼统计力学为例,探讨了如何构筑一个物理理念的结构,如何发掘一个物理理论的物理思想和方法等问题。在教材教法研究中,本文不仅是对玻尔兹曼统计力学的一个初步探讨,还可以作为学习和研究玻尔兹曼统计力学的参考资料。

  • 标签: 结构 微观态 宏观态 平衡态 统计平衡态
  • 简介:摘要:卷积神经网络是一种新型的无导师学习算法,在近几年有了较大发展,其主要思想为利用层间节点竞争产生隐含函数来处理非线性系统,在处理非平稳信号方面,它的优势主要体现在:可以利用网络中所有隐含层,使得原始数据与新产生的参数都保持一定关系,从而实现了非线性函数逼近;通过使用简单、有效等方法来减少输出矢量对算法时间和计算量要求较高之处。本文将介绍一下卷积神经网模型结构及相关技术特性以及一些典型应用场景下常用学习算法进行分析研究。

  • 标签: 卷积 神经 网络
  • 简介:摘要:手机屏幕的缺陷检测操作期间,深度卷积神经网络往往起着关键作用,对实测效果 影响极大,要求技术员能够充分掌握此方法。鉴于此,本文主要围绕着深度卷积神经网络基础下手机屏幕的缺陷检测开展深入的研究和探讨,仅供参考。

  • 标签: 缺陷检测 手机屏幕 神经网络 深度卷积
  • 简介:本文对签名技术的研究背景和发展状况做了简单介绍,描述了在线和离线鉴定系统的优缺点。考虑大部分人对自己的签名有独特的写法和设计,并不同于其对平常文字的书写,综合比对了国内外笔迹鉴定公开数据库,针对个人签名设计、开发了一套基于Android离线签名鉴定系统,并建立了更具实用性的签名数据库xtu_302sg。本文使用深度卷积神经网络(ConvolutionalNeuralNetwork,CNN)提取签名图片特征做身份鉴定,相对于传统方法取得了不错的效果。

  • 标签: 离线签名 卷积神经网络 身份鉴定 信息安全
  • 简介:摘要:人们在进行信息传递活动时需依靠图像这一介质,然而图像的信息采集环节与传递环节有很高几率出现失真情况,让图像内容存在不完整、不具体、不清晰和不真实问题。近年来,卷积神经网络的图像识别技术获得广阔应用空间,有利于图像清晰度的识别工作开展。本文分析了深度学习基础上的卷积神经网络图像清晰度识别,以望借鉴。

  • 标签: 深度学习 卷积神经 网络图像
  • 简介:摘要:人们在进行信息传递活动时需依靠图像这一介质,然而图像的信息采集环节与传递环节有很高几率出现失真情况,让图像内容存在不完整、不具体、不清晰和不真实问题。近年来,卷积神经网络的图像识别技术获得广阔应用空间,有利于图像清晰度的识别工作开展。本文分析了深度学习基础上的卷积神经网络图像清晰度识别,以望借鉴。

  • 标签: 深度学习 卷积神经 网络图像
  • 简介:卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。

  • 标签: 深度学习 卷积神经网络 肺癌筛查 肺结节 医学影像分析 计算机辅助诊断
  • 简介:【摘要】

  • 标签:
  • 简介:摘要目的评价基于深度学习卷积神经网络(convolutional neural networks,CNN)的肺结核CT辅助诊断模型在临床中的应用价值。方法收集2017年3月至2018年3月河北省胸科医院影像科菌阳并接受胸部高分辨率CT平扫检查的1 764例患者的病例资料,其中男937例,女827例,年龄17~73岁,平均年龄38.4岁。由4名影像科医师对含病变的20 139幅CT图像进行分类标注(17种影像特征),以此作为训练数据集,构建肺结核CT图像CNN诊断模型。训练数据集数量最多的前5种影像特征依次为:浸润型肺结核、空洞型肺结核、胸膜增厚、干酪性肺炎和胸腔积液。从已标注图像中随机抽取302幅图像作为测试数据集,以2名高级职称医师的诊断为“金标准”,比较CNN诊断模型和医师在肺结核CT诊断中敏感度和准确率的差异,统计CNN诊断模型分类错误的类型、数量,并绘制自由响应受试者工作特征(FROC)曲线,以测量该模型的最大诊断效能。结果CNN诊断模型对测试数据集中浸润型肺结核、空洞型肺结核、胸膜增厚、干酪性肺炎和胸腔积液的诊断准确率分别为:95.33%(10 982/11 520)、73.68%(2 151/2 920)、73.07%(1 128/1 544)、83.33%(1 020/1 225)和94.11%(814/865);CNN诊断模型的总体诊断敏感度和准确率分别为95.49%(339/355)和90.40%(339/375),医师的对应数值分别为:93.80%(348/371)和92.80%(348/375),CNN模型和医师诊断比较差异无统计学意义(敏感度χ2=1.022,P=0.312;准确率χ2=1.404,P=0.236);FROC曲线显示,当敏感度为78%,假阳性区域个数为2.48时,该模型诊断效能最大。CNN诊断模型诊断结核病变的分类错误主要集中于纤维条索灶、空洞型肺结核、干酪性肺炎与浸润型肺结核的混淆上。结论基于深度学习CNN的肺结核CT辅助诊断模型有较高的诊断敏感度和准确率,该模型可辅助影像科医师的肺结核诊断工作,值得在临床工作中推广应用。

  • 标签: 人工智能 结核,肺 卷积神经网络 CT
  • 简介:摘要目的基于深度卷积神经网络(DCNN)方法自动测量彩色眼底像上全局和局部豹纹分布密度。方法应用研究。将2021年5~ 7月于山东第一医科大学附属青岛眼科医院北部院区行近视手术的患者514例1 028只眼的1 005张彩色眼底像建立人工智能(AI)数据库。采用RGB颜色通道重标定方法(CCR算法)、基于Lab颜色空间的CLAHE算法、多重迭代照度估计的Retinex算法、具有色彩保护的多尺度Retinex算法对图像进行预处理。对比观察上述4种图像增强方法以及使用Dice损失、边缘重叠率损失和中心线损失对豹纹分割模型效果的影响。建立眼底豹纹分割模型识别全图范围内豹纹结构区域;构建眼底组织结构检测模型用于视盘及黄斑中心凹定位。计算视野范围内后极部豹纹密度(FTD )、黄斑区豹纹密度(MTD)、视盘区豹纹密度(PTD )。结果应用CCR算法图像预处理和训练损失组合后,豹纹分割模型的Dice系数、准确率、灵敏度、特异性、约登指数分别达到0.723 4、94.25%、74.03%、96.00%和70.03%。模型自动测量的FTD、MTD、PTD值与人工标注测量值平均绝对误差分别为0.014 3、0.020 7、0.026 7,均方根误差则分别为0.017 8、0.032 3、0.036 5。结论基于DCNN分割和检测方法能自动测量近视患者眼底全局和局部区域的豹纹分布密度,可以更准确地辅助临床监测和评估眼底豹纹改变对近视发展的影响。

  • 标签: 近视 神经网络(计算机) 彩色眼底像 豹纹分布密度
  • 简介:面部的特征点准确定位对于表情识别和面部动画合成等应用具有重要的意义。随着网络时代自拍的盛行,人们对于实际应用场景中不同光照,角度和遮挡条件下的准确特征点定位提出了更高的要求。本文设计了一种基于级联的深度卷积神经网络的面部特征点定位算法,在初步特征点识别的基础上利用级联网络进行回归优化拟合,从而达到了精确定位的效果。

  • 标签: 深度卷积神经网络 级联 面部特征点
  • 简介:在此提出一种改进的深度卷积神经网络模型,该模型通过增加并联卷积层,拓展卷积神经网络宽度实现,有利于提取图像特征,提高网络性能;卷积层中对特征图像采用批量归一化方法进行预处理,加快网络训练.实验结果表明,该模型能更准确地学习宫颈癌细胞图像特征,从而有效降低了分类错误率.

  • 标签: 卷积神经网络 图像识别 宫颈癌细胞
  • 简介:摘要:森林资源评估对于准确掌握森林资源现状和变化,森林可持续经营、森林有序利用意义重大。随着遥感数据资源不断丰富,对遥感影像处理方法越来越先进和完善。遥感影像评价正逐渐取代传统调查方法,成为评估森林资源现有状态和变化的重要工具。本文基于无人机调查影像图,通过专家进行预先评估,建立标注数据,构建和训练了深度卷积神经网络森林资源评价模型。经过实验测试和验证,其准确率达到90.2%,召回率也达到82.8%。对比了传统的评价方法,论文提出的基于深度卷积神经网络的评价方法更加客观、准确,更加有效且符合实际。

  • 标签: 森林资源评估,深度卷积神经网络,无人机遥感影像图,生态系统,生态环境
  • 简介:

  • 标签:
  • 简介:摘要卷积神经网络在自然语言处理中的应用是近年的研究热点。文章通过对几项典型工作的分析,研究了卷积神经网络在各项自然语言处理任务中的性能与效果。并对卷积神经网络语言模型的改进规律进行了总结。

  • 标签: 卷积神经网络 语言模型 分析