简介:摘要苏14-20-34H2井位于苏14区块,苏14-20-34H2井区砂体分布稳定,南北向发育一个相对稳定的有效砂体条带,沿水平段方向延伸一定范围,东西向有一定的分布范围。下面将对本井的施工过程做一个较为详细的分析和介绍,以便对该地区以后的工作有重要的参考价值。
简介:Directconversionoffructose-basedcarbohydratesto5-ethoxymethylfurfural(EMF)catalyzedbyLewisacidinethanolwasinvestigated.ItwasfoundthatBF3(Et)2Owasfavorablefor5-hydroxymethylfurfural(HMF)etherificationtoEMF.BF3(Et)2OcombinationwithAlCl36H2Owiththemolarratioof1wasaneffectivecatalystsystemforsynthesisofEMFfromfructose-basedcarbohydrates.55.0%,45.4%and23.9%ofEMFyieldswereobtainedfromfructose,inulinandsucroseunderoptimizedconditions,respectively.
简介:RamanpeaksofvarioushydratesintheH2O-NaCl-CaCl2systemhavebeenpreviouslyidentified,butaquantitativerelationshipbetweentheRamanpeaksandXNaCl(i.e.,NaCl/(NaCl+CaCl2))hasnotbeenestablished,mainlyduetothedifficultytofreezethesolutions.Thisproblemwassolvedbyaddingaluminapowdertothesolutionstofacilitatenucleationofcrystals.Cryogenic(-185oC)Ramanspectroscopicstudiesofalumina-spicedsolutionsindicatethatXNaClislinearlycorrelatedwiththetotalpeakareafractionofhydrohalite.Capsulesofsolutionsmadefromsilicacapillarywerepreparedtosimulatefluidinclusions.Mostoftheseartificialfluidinclusionscouldnotbetotallyfrozenevenattemperaturesaslowas-185oC,andthetotalpeakareafractionofhydrohaliteisnotcorrelatedlinearlywithXNaCl.However,thedegreeofdeviation(?XNaCl)fromthelinearcorrelationestablishedearlierisrelatedtotheamountofresidualsolution,whichisreflectedbytheratio(r)ofthebaseline"bump"area,resultingfromtheinterstitialunfrozenbrinenear3435cm-1,andthetotalhydratepeakareabetween3350and3600cm-1.Alinearcorrelationbetween?XNaClandrisestablishedtoestimateXNaClfromcryogenicRamanspectroscopicanalysisforfluidinclusions.
简介:[1]CaoYY,LamsJ.RobustH∞ControlofUncertainMarkovianJumpSystemswithTime-Delay.IEEETrans.Automat.Contr.,2000,45(1):77~83.[2]DoyleJC,Glover,KhargonekarPP,etal.State-SpaceSolutionstoStandardH2andH∞ControlProblems.IEEETrans.Automat.Contr.,1989,34(8):831~847.[3]FridmanE,ShakedU.H∞-normandInvariantManifoldsofSystemswithStateDelays.Sys.&Contr.Lett.,1999,36(2):157~165.[4]GeJ,FrankPM,LinCF.RobustH∞StateFeedbackControlforLinearSystemswithStateDelayandParameterUncertainty.Automatica,1996,32(6):1183~1185.[5]HirataM,LiuKZ,SatoT,etal.ASolvabilityConditionofanExtendedH∞ControlProblemUsingRiccatiInequalities.Int.J.Contr.,2000,73(4):265~275.[6]HmamedA.FurtherResultsontheRobustStabilityofUncertainTime-DelaySystems.Int.J.Syst.Sci.,1991,22(3):605~619.[7]IwasakiT,Skelton,E.AllControllersfortheGeneralH∞ControlProblem:LMIExistingConditionsandState-SpaceFormulas.Automatica,1994,42(7):1307~1317.[8]LeeB,LeeJG.RobustStabilizationofLinearDelayedSystemswithStructuredUncertainty.Automatica,1999,35(6):1149~1154.[9]LeeKH,MoonYS,KwonWH.RobustStabilityAnalysisofParametricUncertainTime-DelaySystems.InProceedingofIEEEConferenceonDecisionandControl,Tampa,FL,1998:1346~1352.[10]LehmanB,KhalilS.DelayIndependentStabilityConditionsandDecayEstimatesforTime-VaryingFunctional.IEEETrans.Automat.Contr.,1994,39(8):1673~1676.[11]MahmoudMS,Al-MuthairiNF.DesignofRobustControllersforTime-DelaySystems.IEEETrans.Automat.Contr.,1994,39(2):159~161.[12]MoriETN,KuwaharaM.AwaytoStabilizeLinearSystemswithDelayedState.Automatica,1983,19(5):571~573.[13]NiculescuSI,andAnnasuamyAM.ASimpleAdaptiveControllerforPositive-RealSystemswithTime-Delay.ProceedingoftheAmericanControlConference,Chicago,Illi