简介:以生理信号分析为主,表情行为观察和情绪主观感受评价为辅,对多名被试的情绪进行识别.60名大学女生接受恐惧-快乐-轻松的情绪诱发,有效数据55名,对应每个情绪片段,根据信号标记以及GSR微分,截取1min的生理信号进行处理和分析,应用SPSS对各生理参数进行情绪的单因素方差分析,然后采用逐步多类判别法,提取特征参数以识别情绪.结果表明HR、HRV、R波、T波各生理参数对情绪较敏感;提取出HFP,HRmax,PNN50,LF/HF,Ratio,LFP,MeanNN7个特征参数,构建情绪判别函数Fuction1,Fuction2和Z1、Z2,Z3;轻松的判别正确率为88.0%,快乐的为92.0%,恐惧的为80.0%,总体判别正确率为86.7%.以生理信号分析为主,辅助表情行为观察和情绪主观感受报告,是一种有效的情绪识别方法,所得数据客观、准确,提高了情绪识别率.
简介:目的采用基于Lopez-Mancini-CalbetDivergence(LMCD)的统计复杂度分析方法,对充血性心力衰竭信号、心脏性猝死信号与正常窦性心律信号进行统计复杂度分析。方法采用Bandt-Pompe算法对符号序列进行模式概率统计,分析了充血性心力衰竭信号、心脏性猝死信号与正常窦性心律信号的统计复杂度。结果3种心律信号的统计复杂度存在差异,正常窦性心率信号的统计复杂度最高,充血性心力衰竭信号次之,心脏性猝死信号最低。方差分析表明,基于LMCD的分析方法得出的3种心电信号的统计复杂度差异具有统计学意义。结论采用LMCD的统计复杂度方法可以有效地区分3种不同生理病理状态下心电信号,为辅助临床诊断提供了一种新手段。
简介:摘要:癫痫是大脑异常放电引起的短暂性脑功能失调综合征,是一种常见的神经系统疾病。据统计,患病率超过 4‰。其中 1/3以上癫痫患者还可出现各种精神障碍,严重影响人们正常的生活。脑电图检查对癫痫的确诊具有重要意义,对癫痫的鉴别具有决定性作用。最初的脑电图检查主要依靠医师的肉眼观察,具有较强的主观性,近年来,国内外对于脑电信号处理方面的研究日益增多,许多经典的或现代的信号处理分析方法已开始应用于脑电信号中,为癫痫的诊断提供了更准确和客观地方法。