简介:通过分析显式有限差分格式的数值色散和数值耗散,导出一个适于有限差分格式的通用色散一耗散条件.根据群速度和耗散率之间的物理关系,确定了用以抑制数值解中伪高波数波所需要的适度耗散.在以往发展的低耗散加权基本无振荡格式WENO—CU6-M2上的应用表明,该条件可用作优化线性或非线性有限差分格式的色散和耗散的通用指导准则.此外,满足色散-耗散条件的改进WENO—CU6-M2格式还可选作低分辨率数值模拟,以三维Taylor-Green涡向湍流转捩和自相似能量衰减问题展现了它的这种能力.与经典的动态Smagorinsky亚网格尺度模型相比,在Heynolds数胁:400~3000条件下,无黏和黏性Twlor—Green涡的数值模拟结果均得到明显改善.在保持激波捕捉特性同时,与最新的隐式大涡模拟模型的计算效果相当.
简介:本文介绍了非均匀有理B样条曲线,并给出了非均匀有理B样条曲线的一个插值性质。
简介:参考文献中对Lemke-Howson算法给出了相似于线性规划中的单纯形解法。本文用例指出了该解法中出现循环的情况,导致有解求不出。
简介:Kantorovich不等式的推广文〔4〕给出了x′Ayy′A-1x/(x′xyy′)的上界,其中A是n阶实正定阵,x、y是n维非零实向量。本文给出x′Ayy′A-1x/(x′xy′y)的上界和下界,其中A是任何n×m实矩阵,A-1是A的广义加号逆,x、y分别是n维和m维非零实向量。