学科分类
/ 25
500 个结果
  • 简介:摘要  由于矩阵的初等变换和初等矩阵都有“初等”二字,所以非常容易将二者混为一谈.此文的目的在于解释这两个概念的区别,同时也介绍它们的关系.在对矩阵进行运算时,我们可对其进行类似于行列式的行(列)变换或数乘运算等,即矩阵的初等变换.为了搞清楚变换后的矩阵所具有的特性,也为了说明矩阵的初等变换的意义,我们引入初等矩阵的概念.其实初等矩阵就是单位矩阵矩阵的初等变换后所得的矩阵.具体内容见下文简述.

  • 标签:   矩阵的初等变换 初等矩阵 单位矩阵 逆矩阵
  • 简介:讨论了n(n≥2)阶方阵A与其伴随矩阵A^*的特征值之间的关系,利用A的特征值λ0及其代数余子式Aij给出了A^*的特征值的表达式.

  • 标签: N阶方阵 伴随矩阵 特征值 代数余子式
  • 简介:给出基本初等矩阵的定义,得出任何方阵都可分解为有限个基本初等矩阵的乘积的结论.

  • 标签: 基本初等矩阵 矩阵 分解
  • 简介:系统内部要素之间的相互联系由可达矩阵表示,骨架矩阵是它的最简化表示。在相似关系下.一个可达矩阵的,骨架矩阵是唯一的(即所有骨架矩阵相似且具有相同个数的"1"元素)。

  • 标签: P矩阵 步长
  • 简介:文讨论了循环矩阵的对角化问题。本文讨论推广了的一类循环矩阵——广义循环矩阵。首先确定了复数域上由U确定的一类广义循环矩阵所组成的空间的最大维数;然后给出了复广义循环矩阵与对角阵西相似的充要条件。

  • 标签: 广义循环矩阵 基本广义循环矩阵 特征值 特征向量 酉相似
  • 简介:<正>本文对量子力学中算符的矩阵表示法及算符用矩阵表示时,变换矩阵的求法作了初步归纳。对几种常见算符的矩阵表示和表象变换作了详细讨论。1、力学量算符的矩阵表示将算符表示成矩阵形式一般教材上多给原理上的讨论,少有具体方法。总结两点如下:算符用矩阵表示时,该矩阵一般是方阵,当算符处在包含其自身在内的表象中时,该矩

  • 标签: 矩阵表示 算符 变换矩阵 量子力学 本征函数 本征值方程
  • 简介:讨论了矩阵的秩分解,对几个有关矩阵秩的结论给出与一般教材中不同的证明,同时给出不计算两个矩阵的乘积直接求乘积的秩的方法。

  • 标签: 矩阵 秩分解
  • 简介:讨论了体上矩阵具有固定秩的(1)-逆矩阵的性质,并类似得到体上矩阵具有固定秩(2)-逆矩阵的几个结果.

  • 标签: 矩阵 (1)-逆 (2)-逆
  • 简介:在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的乘法运算时给出了对合矩阵的定义,但对其性质研究很少,对合矩阵和反对合矩阵作为特殊矩阵无论在矩阵理论方面,还是在实际应用方面都有重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论这两种特殊矩阵的性质,本文先给出对合矩阵和反对合矩阵的定义,然后讨论了它们的若干性质.

  • 标签: 对合矩阵 反对合矩阵 性质
  • 简介:在计算机上基于Mizar系统下矩阵的定义,给出次对称矩阵与反次对称矩阵的属性定义.并在此基础上证明了次对称矩阵和反次对称矩阵的部分基本性质。以及相关定理.

  • 标签: 次对称矩阵 反次对称矩阵 Mizar
  • 简介:半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用MoorePenrose逆来代替一般的逆。利用分块矩阵和Schur补得到了关于半正定矩阵Moore-Penrose逆的Had-amard积的几个偏序不等式。

  • 标签: SCHUR补 半正定矩阵 MOORE-PENROSE逆 HADAMARD积 矩阵不等式
  • 简介:

  • 标签:
  • 简介:分块矩阵在线性代数中是一个基本工具,研究许多问题都要用到它。本文借助分块矩阵的初等变换探讨了分块矩阵在计算行列式、求逆矩阵矩阵的秩方面的应用。

  • 标签: 行列式 逆矩阵 矩阵的秩 分块矩阵 应用
  • 简介:学习线性代数,不可避免会遇见矩阵的乘法问题.在应用一些常见的公式及式子时若不慎重考虑,往往会下意识地将类同的表达式照搬到解题过程中,从而得到错误的结论.

  • 标签: 矩阵 错误 剖析