简介:非线性偏微分方程的有限差分算法存在两大难点,一是求解高阶非线性方程组消耗太多的时间和内存,二是计算过程极不稳定,以至在很短暂的时间步内产生爆破现象.为了改善数值稳定性和提高计算效率,针对KdV-Burgers方程,提出一种预校算法及其改进技巧:多次校正的PCM算法,Gauss-Seidel算法和正反交替校正算法.通过这个预校算法,可以求解许多一般的非线性偏微分方程,包括KdV方程,修正KdV方程,组合KdV-MKdV方程,Burgers方程,KdV-Burgers方程等.在一定条件下,这种算法收敛速度快、稳定性好、计算复杂度保持为O(1/h.1/τ);相比Fourier拟谱方法和线性隐式格式,该算法无需求解高阶方程组,编程统一,内存消耗很少.数值实验表明所构造的格式能长时间模拟不同孤立波解的传播与碰撞过程,验证了算法的有效性和稳定性.