学科分类
/ 1
20 个结果
  • 简介:摘要在目前的供电系统当中,变压器是重要的应用设备,其运行稳定和持续对于电力系统的价值发挥有着重要的影响,因此做好变压器的检查和维修现实意义巨大。就目前的分析来看,变压器的运行状态会因为负荷量大小、负荷类型、电压波动等诸多非自然因素和自然因素出现一些故障,发现这些故障并对其进行分析和解决可以保证变压器的使用安全和稳定运行,故针对变压器故障分析对现场安全稳定的运行就起到了至关重要的作用。当前针对牵引变压器的分相的这一特性,探讨牵引变压器故障分析。基于BP神经算法的检测对于牵引变压器故障的分析效果较好,本文对此做全面的探讨,旨在为变压器故障解决提供参考。

  • 标签: BP神经算法 牵引变压器 故障
  • 简介:摘要智能输电网是人工智能神经网络的典型应用。其采用数据层、通信层、应用层网络结构,采用开放式的数据网络平台。交叉学科的服务商在数据网络平台进行应用层数据发掘与实现,为用户提供相互独立的产品,实现可持续的数据挖掘与应用。

  • 标签: 人工 神经网络 电网故障 诊断
  • 简介:摘要本文主要研究基于BP神经网络的电力负荷预测,首先对BP神经网络理论进行了分析,阐述了BP神经网络结构和学习算法,然后重点研究基于BP神经网络的电力负荷预测,包括历史数据的选取及预处理、负荷数据的归一化处理、BP神经网络的拓扑结构、BP神经网络学习参数的选取以及预测误差的分析,在实际验证中取得了良好的效果。

  • 标签: BP 神经网络 电力 负荷预测
  • 简介:由于电网容量的快速可调的容量限制,造成风电并网的消纳能力较弱,导致越来越多的弃风电量。研究了神经网络方法,根据历史风塔的测量的不同高度、风速和风向的数据,结合风电场风机的历史观测数据,建立了神经网络模型,然后将样本数据输入到已建好的神经网络模型以得到风机的理论发电功率,进而得到弃风电量。通过对比测风塔法,神经网络法,样板机法和面积积分法统计风电弃风电量大小,基于测风塔神经网络法的弃风电量评估模型在低风速时的评估效果具有良好的参考价值,比较接近实测风速。

  • 标签: 电力系统 测风塔 神经网络模型 弃风电量
  • 简介:摘要在Matlab平台下,设计了一种基于神经网络的风机振动故障在线自诊断系统。对风力发电机组中的核心部件主轴和齿轮箱进行故障诊断,根据主轴和齿轮箱振动信号故障特征,通过小波变换方法对振动信号进行分频处理,有效提取不同故障下各频段能量的故障特征;再将提取的能量故障特征输入至训练好的BP神经网络诊断系统中进行识别,实现故障的智能诊断。通过试验证明了该方法的有效性。

  • 标签: 自诊断 小波网络 BP网络 故障特征频率
  • 简介:摘要单神经元PID控制在工业发展过程当中有着极为关键的作用,可以有效地提升控制精度与控制范围,本文通过对于单神经元自适应PID控制的分析与应用进行探讨,为其进一步发展提供了借鉴。

  • 标签: 单神经元 自适应 PID控制
  • 简介:摘要对于传统PI双闭环直流电机调速体系存在呼应速度慢、超调量大、抗干扰才能及自适应才能差等问题,提出了一种双闭环直流电机调速体系的神经元PID转速调理器规划办法。该转速调理器选用神经元操控器和份额操控相结合进行规划,然后构成了一种具有自学习、自适应才能的神经元PID控制器,然后与传统单神经元PID规划的转速调理器操控作用进行了比照。结果表明,依据神经元PID转速调理器的双闭环直流电机调速体系具有较快的呼应速度、杰出的动态和静态稳定性、较强的自适应才能和抗干扰才能。

  • 标签: 直流电机 神经元PID 调速体系规划 仿真
  • 简介:在开关磁阻电机直接转矩控制系统中,为了提高磁链观测器的性能,准确地实现磁链观测,提出基于粒子群优化的递归神经网络定子磁链观测器。利用训练样本对网络进行离线训练,通过训练过程中不断调整网络的权值和阈值,形成一个泛化能力强、结构简单的网络来实现电压、电流和磁链的非线性映射。将所建磁链观测器应用到开关磁阻电机直接转矩控制系统仿真中,仿真结果表明,对比传统递归神经网络磁链观测器,该方法不仅提高了收敛速度,而且具有很高的精确度和很强的泛化能力,证明了该方法的正确性和可行性。

  • 标签: 开关磁阻电机 直接转矩控制 定子磁链观测器 粒子群优化 递归神经网络
  • 简介:摘要随着社会经济的不断发展,机电设备普及应用于各个领域,成为企业发展进程中不可忽视的一个组成部分,为了确保机电设备运行的安全、稳定与高效,要加强对机电设备的温度监测和预警,要以BP神经网络为载体,准确快速地显示机电设备运行中温度的变化状态,充分利用计算机网络优势特点,获取机电设备的温度相关数据信息,从而全面而清晰地反应出机电设备的线路老化及负载程度,避免机电设备故障而引发的生产事故。

  • 标签: BP神经网络 机电设备 温度 监控 预警 系统
  • 简介:摘要随着电网发展,集控站模式兴起。运行部门精准地预测倒闸操作所需要的时间,可以大大提高供电可靠性,提升运行人员的工作效率。本文结合现有的集控站模式,提出了BP神经网络法,帮助运行人员合理预测操作所需时间。

  • 标签: 集控站 可靠性 效率BP神经网络
  • 简介:摘要模糊神经网络无论作为逼近器,还是模式存储器,都是需要学习和优化权系数的。学习算法是模糊神经网络优化权系数的关键。对于逻辑模糊神经网络,可采用基于误差的学习算法,也即是监视学习算法。对于算术模糊神经网络,则有模糊BP算法,遗传算法等。

  • 标签: 神经网络 光伏发电 功率 控制方法
  • 简介:摘要本文通过对变压器油中气体含量的研究以及对神经网络的学习,构建了神经网络的诊断模型,而后对同一样本进行多种训练,通过对误差仿真结果的比较,证实了改进型算法的可行性与优越性,从而对变压器的油色谱故障诊断提供了更科学的方法。

  • 标签: 变压器故障 油中气体 神经网络
  • 简介:摘要本文针对电能扰动的检测问题,提出一种基于小波变换、S变换及概率神经网络的检测方法首先对信号进行频域拆分;然后分析不同干扰的特点,确定六个特征量。利用S变换和快速傅里叶变换提取这些特征量,再将它们带入训练好的神经网络进行检测。仿真结果表明,本方案对单一电能质量扰动检测准确率高,速度快;对混合扰动检测准确较低,仍存在改进空间。

  • 标签: 电能质量 S变换 神经网络 小波变换
  • 简介:对K-means算法加以改进,使用减法聚类确定聚类中心数量;以相距最远的两个样本作为聚类中心的边界,改进的K-means算法将K个初始中心分散到含有输入样本点的各个区域中,使其能够反映样本之间的关系和分布特征;初始中心确定后,使用点对称距离方法调整聚类中心。利用改进的K-means算法将历史日聚类分成4种天气类型,取相似日作为训练样本,对4种天气类型分别建立基于改进K-means算法的RBF神经网络功率预测模型。采用上海某光伏电站实测数据验证,结果表明提出的的预测方法精度提高,实用性较强。

  • 标签: 功率预测 径向基神经网络 K-MEANS算法 减法聚类 点对称距离
  • 简介:由于常规PID控制难以满足电弧炉电极调节系统复杂的工况,本文将径向基函数(RBF)神经网络与PID控制相结合,提出RBF—PID参数整定方法。通过RBF神经网络对控制对象Jacobian信息的辨识,采用增量式PID梯度下降算法整定已有的PID参数,设计了RBF-PID电极调节系统控制器。仿真结果验证了RBF-PID控制器能够实时整定PID参数,实现电极调节系统快速、准确地控制。

  • 标签: 电弧炉 电极调节系统 RBF神经网络 PID控制 参数整定
  • 简介:摘要本文主要针对BP神经网络在水利发电控制系统的应用进行探讨,总结了在实际应用的方法和应用的网络建模和仿真分析,希望可以为今后的BP神经网络在水利发电控制系统的应用带来参考和借鉴。

  • 标签: BP神经网络 水力发电控制系统 应用
  • 简介:摘要对于传统PI双闭环直流电机调速体系存在呼应速度慢、超调量大、抗干扰才能及自适应才能差等问题,提出了一种双闭环直流电机调速体系的神经元PID转速调理器规划办法。该转速调理器选用神经元操控器和份额操控相结合进行规划,然后构成了一种具有自学习、自适应才能的神经元PID控制器,然后与传统单神经元PID规划的转速调理器操控作用进行了比照。结果表明,依据神经元PID转速调理器的双闭环直流电机调速体系具有较快的呼应速度、杰出的动态和静态稳定性、较强的自适应才能和抗干扰才能。

  • 标签: 直流电机 神经元PID 调速体系规划 仿真
  • 简介:最大功率点跟踪(MPPT)控制可以使光伏模块最大程度地输出功率,因此成为增强光伏发电系统输出功率的一个研究热点。本文提出一种基于二进制蚁群模糊神经网络的光伏系统最大功率点跟踪控制策略,利用模糊神经网络代替传统的BP神经网络对最大功率点进行预测,解决了恒压控制法误差较大的问题;利用二进制蚁群算法对模糊神经网络权值进行优化,克服了其搜索速度慢、易陷入局部极小值的缺点;将得到的最大功率点电压输入恒电压控制算法中,然后通过恒压法对最大功率点进行跟踪。在所构建的仿真模型中模拟了不同光照强度和环境温度的仿真环境,结果表明所提出的MPPT控制策略准确性高、适应性强。

  • 标签: 最大功率点跟踪 恒压法 二进制蚁群算法 模糊神经网 权值优化