简介:合成了一种新型磷-氮复合膨胀型阻燃剂2,6,7-(三氧杂-1-氧代-1-磷杂双环[2.2.21辛烷-4-亚甲基)一二(4-.氨基苯基磷酸酯)(PDAP),并对其结构进行了测定。研究了其作为活性阻燃剂在挠性覆铜板(FCCL)的应用,对比实验证实其比传统的改性环氧树脂具有更好的阻燃性和耐高温性,其剥离强度达到1.8N/cm。
简介:通过AFM、交流阻抗谱及扫描Kelvin探针技术,研究硼酸对7050铝合金硼酸?硫酸阳极氧化膜结构及耐蚀性的影响。结果表明,在硼酸-硫酸阳极氧化体系中,硼酸不会改变氧化膜阻挡层的结构,但会显著影响氧化膜多孔层的结构形式,进而影响氧化膜的耐蚀性。在0~8g/L的范围内,随着电解液中硼酸含量的增加,氧化膜的多孔层电阻增大,电容减小,表面势正移,孔径缩小,耐蚀性变好。在高于8g/L时,随着硼酸含量的增加,氧化膜的孔隙变大,阻抗变小,电子逸出功降低,耐蚀性变差。
简介:偏磷酸钙纤维(CMPF)以良好的生物相容性和降解特性在生物医用领域得到了较好的发展和应用,采用熔融纺丝法制备了作为医用复合材料增强相的偏磷酸钙纤维。开展了CMPF在不同pH值磷酸缓冲液中的降解试验,测试得到了纤维直径与降解时间的关系,提出了在任意pH溶液中CMPF直径达到设计指标的降解时间预测模型,最后用CMPF在蒸馏水中的降解试验初步验证了预测模型,并分析预测模型产生偏差的原因。
简介:采用物理化学恒电流电解装置和抽滤洗涤装置将先进高温结构材料FGH96中γ'相萃取分离,利用X射线衍射、扫描电子显微和能谱等分析技术,以及化学成分分析方法,对萃取相的组成、类型、形状、粒度大小及晶体结构等进行分析。结果表明适用于粉末高温冶金的理解提取分离第二相的条件是:电解液(1%(NH4)2SO4+2%酒石酸+5%乙二醇),电流密度0.03A/cm2,电解温度-5~0℃,电解时间30min;萃取粉末物理定性XRD分析采用CuKα辐射(40kV,40mA),狭缝规格1.0mm×1.0mm×0.6mm,扫描范围10°~90°,步长0.02°;ICP法适用于进行萃取第二相粉末元素含量的分析。
简介:采用先水热合成(150°C,12h)、后煅烧(1000°C)来实现(Y0.95Eu0.05)2O3亚微米球形和微米板片红色荧光颗粒的形貌可控合成。通过XRD、FT-IR、FE-SEM和PL等检测手段对样品进行分析。结果表明:将尿素与Y+Eu的摩尔比由10增大至40~100,得到的前驱体由碱式碳酸盐亚微米球转变为碳酸盐微米片;经1000°C煅烧所得氧化物能够继承前驱体的形貌特征;板片二维形貌的限制内部晶粒自由生长,使更多的(400)晶面暴露在板片颗粒表面;在250nm紫外光的激发下,荧光颗粒的荧光发射峰位及荧光不对称因子[I(5D0→7F2)/I(5D0→7F1),~11]均与颗粒形貌的相关性不强,但荧光强度呈现明显的形貌依存性;微米板片颗粒的尺寸大,从而其比表面积小,因此具有更高的荧光强度(微米板片在~613nm处的荧光强度为球形颗粒的~1.33倍)。
简介:采用电子束物理气相沉积工艺(EB—PVD)制备了针对第二代单晶高温合金的热障涂层,用SEM观察分析了不同成分粘结层的热障涂层热循环试验后的结构和晶体形貌,在N2条件下对比了不同成分粘结层材料与第二代单晶高温合金的热膨胀系数,分析了热循环试验后粘结层与热生长氧化(TGO)层成分、厚度及完整性情况。结果表明:NiCoCrAIYHf与第二代单晶高温合金热膨胀系数更为接近,匹配性更好;采用EB—PVD工艺制备的热障涂层在热循环试验过程中会产生大量垂直裂纹使涂层具有良好的应变容限;粘结层中Al元素含量的提高以及Hf等元素的加入,使得热循环试验后涂层TGO层的A1203纯度较高、生长缓慢无块状物生成,并且极大地改善了粘结层和合金基体的内氧化,涂层1100℃循环氧化寿命达到1200h以上。
简介:以Ti+Ni+B4C粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得TiB-TiC共同增强TiNi-Ti2Ni金属间化合物复合涂层。采用OM、SEM、XRD、EDS及AFM等手段分析激光熔覆涂层的显微组织及磨损表面,测试涂层的室温干滑动磨损性能。结果表明,激光熔覆TiB-TiC增强TiNi-Ti2Ni金属间化合物复合涂层熔覆具有独特的显微组织,菊花状的TiB-TiC共晶均匀分布在TiNi-Ti2Ni双相金属间化合物基体中。由于高硬、高耐磨TiB-TiC陶瓷相与高韧性TiNi-Ti2Ni双相金属间化合物基体的共同配合,激光熔覆涂层表现出优异的耐磨性。