简介:本文利用美国NCEP/NCAR再分析资料、哈德来(Hadley)中心海温数据、国家气候中心的观测站降水和客观分析海气通量(OAFlux)潜热感热通量资料,研究了1960-2010年春季黑潮区潜热输送对中国春季降水的影响及其影响过程。本文以黑潮流经的中国东部海域及邻近海域为研究对象,该区域是黑潮的主体区域,在文中简称为东海黑潮区。对中国东海以及邻近海域海温与降水的分析表明,在夏季该区域可能以大气强迫海洋为主,而在春冬两季可能主要为海洋强迫大气为主,秋季则可能为不明显的海气相互作用。在春季西北太平洋区域中感热和潜热都对黑潮流经的区域有比较好的敏感性,黑潮流经区域感热和潜热的气候平均值分别约为30Wm^-2与120Wm^-2;春季的感热通量标准差大值区主要集中在日本以西区域,潜热通量标准差主要集中在中国东海区域与日本东南区域(即东海黑潮区域)。春季潜热EOF第一模态的主要变化就集中在东海黑潮流域。相关分析与合成分析的结果表明,当黑潮潜热指数为正时,华南地区春季降水偏多,长江以北地区偏少,反之亦然。在物理过程分析中,黑潮潜热指数大于0.8时,长江以南的中国大陆有比较强盛的异常北风,使得水汽无法输送到更北的地区,导致在华南地区水汽的积累,并且在海面出现有利于降水的垂直运动异常延伸到大陆上,使华南地区降水增多,而长江以北的东部地区由于水汽输送偏弱,导致水汽积累偏少,从而降水减少。当黑潮指数小于-0.8时,有较强盛的异常南风,有利于水汽输送到北方地区,水汽在华北地区积累,导致长江以北出现降水正异常,而华南地区由于南风偏强,水汽输送加强,导致水汽无法在此区域积累,并且出现不利于降水的垂直运动异常,从而导致降水偏少。
简介:基于最新的GTAP8(GlobalTradeAnalysisProject)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。
简介:通过分析1978—2013年三北(东北、西北、华北)防护林建设区降水、气温等气象要素变化与植被生态质量的相互关系,以及1961—2013年我国主要草原区气象要素变化与草原生产力的相互关系,指出2000年以来北方降水增多导致三北防护林地区植被生态质量持续好转,且2000年以来在降水增加、生态工程实施的情况下,北方草原生态恶化的局面有所改变。进一步根据RCPs排放情景和预估的我国未来气候变化,指出未来30~60年我国北方地区气候呈现暖湿化趋势,利于巩固和扩大三北防护林和草原生态建设成果,缩短生态恢复的时间;但气候增暖会增加森林和草原火灾及病虫害的发生范围和频率。在对策上,指出应充分利用北方气候暖湿化的正效应,加快三北防护林建设和北方草原生态恢复;同时加强防护林和草原适应气候变化和防灾减灾的科学研究。
简介:1.1海洋层积云微物理特征的观测研究利用海洋层积云观测试验数据库中的气象、云粒子和垂直湍流观测资料,分析了海洋层积云穿云过程中云参数的特征及微物理过程。将穿云过程按照降水强度分为晴空、轻度毛毛雨和重度毛毛雨3个类型。结果表明,非降水穿云过程、轻度毛毛雨、重度毛毛雨的云滴数浓度平均值分别为256、247和193;液态含水量分别为0.06、0.15和0.30;滴谱的标准差分别为1.20、1.42和1.98;相对散度分别为0.40、0.34和0.32。对夹卷混合过程的分析表明,海洋层积云中极端非均匀夹卷混合过程占主导,但非均匀夹卷混合并随后抬升过程也占相当比重。分析了非降水、小毛毛雨和大毛毛雨穿云过程的垂直速度标准差与云参数的关系,结果表明在海洋层积云中小毛毛雨时垂直速度的扰动与云参数的关系更加紧密。(段婧)
简介:生物炭对土壤中多环芳烃(PAHs)环境行为的影响较大。通过批次实验,研究了不同温度(300℃、500℃和700℃)下制备的稻壳生物炭(BC)对3种土壤(草甸土、水稻土和黄壤)吸附菲的影响。结果表明,生物炭、土壤以及添加生物炭的土壤对菲的吸附数据都能用Freundlich模型较好地拟合(砰为0.9968~0.9765)。生物炭对菲的吸附容量(群值)随着制备温度的升高而增加。生物炭添加对土壤吸附菲的群值的影响程度跟生物炭的制备温度以及土壤有机质含量有关,700℃下制备的生物炭(700BC)对3种土壤吸附菲的群值都能显著提高;500℃下制备的生物炭(500BC)对有机质含量低的黄壤和水稻土的群值有显著提高,但对有机质含量高的草甸土提高有限;300℃下制备的生物炭(300BC)只能显著提高水稻土对菲吸附的群值。因此,在用生物炭修复PAHs污染土壤时,生物炭和土壤的性质都是需要考虑的重要因素。