学科分类
/ 1
17 个结果
  • 简介:本文提出了一种改进的注意选择模型,在这个模型中,周边神经元代表初级视觉皮层的神经元,中心神经元代表更高级视觉皮层中的神经元.生理实验发现方向选择性是初级视觉皮层神经元的重要特性之一,所以模型除了考虑外部刺激的强度,也考虑了初级视觉皮层中的神经元的方向选择性.仿真结果显示改进后的模型能够选择具有不同方向选择性的目标,并且能从一个目标转移到另一个目标.和原模型相比,改进后的模型更符合生理背景.该模型的动力学分析结果,对于理解视觉神经系统的编码有一定的帮助.

  • 标签: 方向选择性 注意力选择模型 神经网络 非线性动力学
  • 简介:通过实验建模,提出了一种改进的Bingham模型来描述磁流变阻尼,模型中的各参数具有明确的物理意义,都与磁流变阻尼器的特性有关.另外,还采用此模型研究了单自由天棚阻尼控制系统的主共振,利用平均法得到了系统的理论解,并对理论解进行了数值验证.最后,研究了各参数对主共振的影响,从而可以更加有效地控制主共振.

  • 标签: 磁流变阻尼力 建模 平均法 主共振 天棚阻尼 滞后非线性模型
  • 简介:研究了重物对圆板的冲击问题.采用伽辽金原理及拉普拉斯变换推导出了物体对圆板的冲击解析表达式.通过数值实例,讨论了圆板半径、板厚、缓冲垫刚度、重物下落高度、重物质量等因素对重物对圆板冲击影响,并绘出了冲击随时间的变化曲线.算例表明:用该法求冲击问题,不但比传统的Hertz接触理论更接近真实情况,而且计算简便,便于工程设计人员应用.

  • 标签: 冲击力 圆板 重物 计算研究 HERTZ接触理论 撞击
  • 简介:基于改进的KBM法,研究了强非线性多自由自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.

  • 标签: 强非线性多自由度自治系统 内共振 近似解
  • 简介:空间绳网的展开效果是空间绳网捕获任务成功的关键所在,而空间绳网展开效果的性能指标和设计参数都数目较多,且单次仿真试验耗时较长,为了避免进行耗时极长的全析因仿真试验,考虑采用正交试验设计方法以减少试验次数.本文针对影响空间绳网展开效果的设计参数开展了灵敏分析,首先提出了空间绳网展开的性能指标和设计参数,然后基于正交试验设计安排仿真试验,获得了正交试验结果,最后综合运用极差法和方差法,对正交试验结果的各项性能指标依次进行了参数灵敏分析.通过本文研究,精简了设计参数和待优化的性能指标的个数,为下一步的空间绳网展开参数优化设计打好了基础.

  • 标签: 空间绳网 正交试验 灵敏度分析
  • 简介:在状态空间下,将线性陀螺系统微振动问题导向哈密顿体系,可以得到一组加权共轭辛正交关系和模态展开定理.利用这种特点构造了陀螺系统模态摄动计算式与灵敏计算式,从而解决了拉格朗日体系下陀螺系统模态摄动分析与灵敏计算的困难,算例显示了文中计算方法的有效性.

  • 标签: 陀螺系统 模态摄动分析 灵敏度计算 惯性动力系统 哈密尔顿体系 微振动
  • 简介:同时计入地基中的非线性弹性、黏性以及剪切作用的影响,研究移动集中简谐力作用下无限长地基梁稳态响应问题.假设基础非线性弹性为立方非线性.通过Adomian多项式分解方法和Fourier变换得到梁稳态响应的Green函数,再运用Fourier逆变换得到梁稳态响应近似解析解的积分表达式.最后对解析积分表达式应用留数定理得到复数域上的解.通过数值算例,考察了移动集中简谐的频率和移动速度对无限长地基梁稳态响应的影响.另外,还通过算例对比研究了地基的非线性弹性系数和剪切系数对无限长地基梁稳态响应的影响.

  • 标签: 地基梁 非线性 无限长 移动简谐力 摄动法
  • 简介:提出了非线性多自由系统的一种新的参数识别方法,研究了二次非线性的2-自由系统.基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型.利用系统自由振荡条件下相坐标测量值集合对系统的哈密尔顿函数进行拟合,并用最小二乘法进行参数识别.不管系统非线性的强弱如何,只要系统是保守的,这种方法就有效.

  • 标签: 非线性多自由度系统 参数识别 哈密尔顿函数
  • 简介:动力学和控制系统中往往包含有不确定性参数,为此提出了一种基于随机响应面的不确定性参数灵敏分析方法,以量化参数不确定性对响应变异性的影响.文中首先利用随机响应面建立不确定性参数和响应之间的表达式,然后通过求偏导方式推导参数的灵敏系数,该系数综合反映了参数均值和标准差的影响.最后通过一根包含几何、材料不确定参数的数值梁来验证所提出方法,并与方差分析法结果进行了比较.

  • 标签: 不确定性参数 灵敏度分析 随机响应面 灵敏度系数 方差分析
  • 简介:研究随机扰动下简单电力系统的可靠反馈最大化.应用拟不可积哈密顿系统随机平均法和随机动态规划原理,导出以可靠最大为目标的动态规划方程和以平均首次穿越时间最长为目标的动态规划方程.通过分别求解相应的动态规划方程,得到最优控制律,受控与未控系统的条件可靠性函数及平均首次穿越时间.最后应用MonteCarlo模拟验证结果的准确性.

  • 标签: 电力系统 首次穿越 随机平均法 随机动态规划方程 可靠性 寿命
  • 简介:在高参数汽轮机组和航空发动机等旋转机械中,转子-密封中的气流激振对转子非线性动力学特性的影响不容忽视.本研究中建立了转子-密封系统三维流场模型,应用计算流体动力学(CFD)软件对可压缩气流流场进行模拟计算,获得了密封流场特性.由流场计算结果进一步获得了Muszynska气流激振模型中的相关经验系数,使得此模型更加适用于气流激振的计算.在对转子一密封系统进行非线性动力学分析过程中应用幂级数展开形式建立了系统幂级数模型.利用平均法得到气流激振的1:2亚谐共振分岔方程,进一步应用奇异性理论和Hopf分岔理论研究了系统1:2亚谐共振的转迁集和系统超临界Hopf分岔与亚临界Hopf分岔的存在条件.通过参数控制方法抑制了转子-密封系统出现亚临界分岔的出现,使得系统稳定性提高.本文的分析结果对工程设计和操作具有一定的指导作用和意义.

  • 标签: 转子动力学 气流激振力 亚谐共振 奇异性理论 HOPF分岔
  • 简介:本文以一类单自由双边非对称碰撞振动系统为研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似为马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.

  • 标签: 碰撞振动系统 广义Hertz接触模型 随机平均法 稳态概率密度 广义胞映射
  • 简介:基于Poincaré映射方法对一类两自由碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由各阶谐波分量的表达式.证明了该类动力学系统中各自由之间高次谐波分量的与原线性系统动柔矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由系统进行数值仿真,验证了该方法的有效性.

  • 标签: 局部非线性 非线性输出频率响应函数 高次谐波 辨识
  • 简介:研究了一类二自由模型在高速切削过程中的颤振运动.首先建立了二自由切削运动模型,得到了四维的非线性分段方程,然后研究切削中的动态分量对切削颤振的影响,应用特征值法解析建立了系统发生Hopf分岔的临界条件.结果表明,当分岔参数经过某一临界值时发生Hopf分岔.最后,通过数值方法对该系统进行了数值模拟,从而验证了该临界条件的有效性.

  • 标签: 颤振 高速切削 非光滑系统 HOPF分岔
  • 简介:以一种平面三自由可控挖掘机构为例,运用拉格朗日方法建立了机构的刚体动力学模型,求解得到了各主动杆的系统广义;进而针对其半闭环控制系统的控制策略进行研究,基于机构驱动元件.交流控制电机及其驱动器的数学模型,运用模糊算法设计了一种模糊-PID双模控制器并对其进行仿真分析.结果表明:基于模糊算法的控制器在超调量、调节时间、上升时间和抗干扰能力等方面均具有较好性能,满足系统的控制要求.

  • 标签: 多自由度可控机构 挖掘机 动力学 模糊-PID控制
  • 简介:研究了基于飞行遥测数据,使用环境激励模态辨识方法辨识系统的模态参数时,挑选真实模态的方法.首先,详细介绍了ARMA-NExT环境激励模态辨识方法的理论.接着,给出了模态指示因素,并详细分析了基于稳定图方法、频域和时频分析方法的真实模态筛选的方法.最后通过算例研究了飞行模态筛选的过程.研究发现,通过该方法得出结果与频域和时频分析结果基本一致.

  • 标签: 模态辨识 ARMA-NExT 工作模态 稳定图