简介:基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.
简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.
简介:本文以一类单自由度双边非对称碰撞振动系统为研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似为马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:本文对移动车辆作用下桥梁系统的振动能量俘获进行了研究.将车辆模型简化为车轮--弹簧--阻尼器--簧上车身质量体系,桥梁简化为对边简支对边自由板模型,压电俘能结构采用粘贴有压电晶体材料的悬臂梁并在其末端附加一质量块.对于这个耦合动力学模型,首先,通过板壳振动理论推导出了移动车辆作用下板的运动微分方程;其次,根据欧拉伯努利梁振动理论和基尔霍夫第一定律得到了以桥梁振动响应作为激励的悬臂梁动力学--压电耦合方程;最后,对耦合运动微分方程进行了求解并对其数值模拟结果进行了分析.结果表明:采用设计的压电俘能结构可以有效地收集桥梁系统的振动能量,而压电装置的位置、压电梁的厚度、集中质量、车辆速度对压电俘能效率都有一定影响.