简介:峰放电频率适应性是神经元在信息处理过程中重要的动力学特性之一.当神经系统受到外电场作用时,会对其动力学行为以及神经电信息的产生、传导产生影响.我们基于Leakyintegrate-and-fire(LIF)神经元模型,建立了外电场作用下改进的LIF神经元模型.采用随时间演化的膜电位曲线和峰放电频率曲线,以及随外电场变化的起始峰放电频率曲线和稳态峰放电频率曲线,研究不同强度、频率外电场作用下改进的LIF模型的适应性变化.此外,还利用相邻峰峰间期(ISI)之间的相关性进一步阐明外电场对神经元适应性的影响.
简介:研究完整力学系统的Noether对称性、Lie对称性和形式不变性,以及由它们导致的Noether守恒量、Hojman守恒量和一类新型守恒量。
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:在一类高维映射中实现了由Iooss等人提出的映射不变圈的算法.首先分析了不变圈的分岔条件,然后通过Fredholm择一方法分析了在计算不变圈过程中出现的一类方程解的存在性,再根据不变圈上映射到自身的不变性,通过分析振幅各阶项的系数,最终在一高维映射中实现了不变圈的计算。
简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:非线性输出频率响应函数是由Voherra级数发展而来的一个新概念.对一类具有反对称阻尼特性的隔振器,通过该概念推导出了振动传递性与系统非线性参数之间的显式解析关系;进而系统地研究了非线性阻尼参数对隔振器的力传递性能和位移传递性能的影响.研究结果表明,虽然非线性隔振器在受正弦信号激励下会出现高次倍频分量,但对于其传递性能的评估仍可简单地通过系统输入和输出信号的基频分量之间的关系来衡量;另外,反对称非线性阻尼能够有效地抑制隔振器在共振区的力传递性和位移传递性,而在非共振区则基本无抑制效果.研究结果对于具有反对称阻尼特性的隔振器的分析与设计具有重要意义.