简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.
简介:基于车辆-轨道耦合动力学和空气动力学提出了一种快速计算横风下高速列车系统动力学行为的平衡状态方法.首先,忽略轨道不平顺并利用流固耦合联合仿真方法计算横风下高速列车的平衡状态;然后,将平衡状态下的气动力加载到车辆一轨道耦合动力学模型并计算高速列车动力学响应.利用建立的平衡状态疗法,研究了列车在速度为13.8m/s的横风下以350km/h速度运行时的流固耦合动力学行为.比较了平衡状态方法和联合仿真方法两种方法下列车姿态、安全性和舒适性指标的差异,计算结果差别在3.26%以内.研究结果表明:平衡状态方法计算横风下高速列车流固耦合的效率更高.
简介:针对俯仰运动贮箱中液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱中液体的非线性晃动.首先将速度势函数φ在自由液面处作波高函数η的Taylor级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;然后用谐波平衡法(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组中得到含有未知系数相应多个代数方程式;最后用Broyden法对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时液面波高出现明显的零点漂移现象.