学科分类
/ 2
21 个结果
  • 简介:通过非线性状态反馈,不改变Hopf分叉点,实现对四维Qi系统极限环的幅控制.推导出Qi系统在第一类非零平衡点上产生Hopf分叉的条件,绘制第一类平衡点的分叉图.采用washoutfilter非线性控制律,利用中心流形定理对受控系统降维,得到极限环的幅与控制增益之间的近似解析式.通过数值模拟以及幅解析解与数值解的比较,验证幅预测的正确与控制的有效

  • 标签: Qi系统 HOPF分叉 极限环 幅值控制
  • 简介:提出了非线性保守系统周期运动的Hermite插解法.该方法首先将时间转换为周期运动时间,由此系统的微分方程变为适用于Hermite插的形式.与Qaisi提出的传统幂级数法不同,采用两点Hermite插函数代替一点幂级数展开,保证了求解的收敛及精度.使用Hermite插解法给出了一类非线性振子的近似通解.研究表明,该近似通解不但可用于进一步分析振子的振动特性,且具有较高精度.

  • 标签: HERMITE插值 幂级数法 DUFFING振子 周期运动 Duffing简谐振子
  • 简介:对含有时滞位移和时滞速度的vanderPol方程进行了研究,着重研究了时滞参数对vanderPol方程极限环幅的影响.首先采用摄动法从理论上推导出极限环幅与时滞参数之间的关系,分析时滞参数对幅大小的影响,并着重讨论了不改变振动频率情况下对幅的控制.最后用数值计算的方法验证了理论计算结果,结果表明数值计算结果与理论结果相当吻合.

  • 标签: van der 极限环 幅值 时滞控制 l系统
  • 简介:在简单介绍WH-800型离心机基本结构及工作原理的基础上,介绍了基于重构吸引子轨迹矩阵的奇异分解技术,并引入自相关函数对现有奇异分解技术加以改进.通过对现场实测故障信号的分析,表明改进的奇异分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号,为离心机的故障诊断提供了一种新的思路.

  • 标签: 离心机 奇异值分解 降噪 故障诊断
  • 简介:研究了一种含有绝对项的三维微分动力系统,用李雅普诺夫方法得到了系统发生第一次Hopf分岔的条件.利用相轨迹图、分岔图、最大李雅普诺夫指数谱等非线性动力学分析方法,分析了该系统从规则运动转化到混沌运动的规律.该系统是按照Feigenbaum途径(倍周期分岔)通向混沌的,在混沌区域存在周期窗口.当参数达到激变临界点时,混沌吸引子和不稳周期轨道在吸引子边界上碰撞,发生边界激变,激变临界的领域内还存在相对长时间的瞬态混沌过程.

  • 标签: 带绝对值项系统 分岔 激变 混沌 倍周期分岔
  • 简介:对具有重根的广义特征问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征的计算能达到较高精度.

  • 标签: 广义特征值问题 重根辨识 快速Fourier变换法 固有频率 动力学响应
  • 简介:针对多体系统动力学数值仿真问题,研究基于Hermite插的离散变分方法.首先对广义坐标和广义速度进行Hermite插,结合Gauss数值积分方法,利用Hamilton原理和离散力学变分原理,建立了含已知导数信息和含未知导数信息的Hermite插离散变分数学模型,求解得到精确度较高的动力学仿真结果.该方法可以在步长较大时精确保持约束方程,并保持系统总能量在一定范围内有界变化,适用于长时间仿真情况.

  • 标签: 多体系统动力学 离散变分方法 HERMITE插值 高斯求积
  • 简介:对含有非线性时滞位移的vanderPol-Duffing方程进行了研究,着重研究了时滞参数对vanderPolDuffing系统Hopf分叉及极限环幅的控制.首先采用摄动法从理论上推导出极限环幅与时滞参数之间的关系,分析时滞参数对幅大小的影响,并着重讨论了不改变振动频率情况下对幅的控制.通过对零解的稳定性分析,得出Hopf分叉产生的条件.最后用数值计算的方法验证了理论计算结果,数值计算结果与理论结果相当吻合.

  • 标签: 摄动法 分叉控制 时滞动力系统
  • 简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.

  • 标签: 锥形梁 Bezier插值方法 锥度比 固有频率
  • 简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.

  • 标签: BELL多项式 BACKLUND变换 孤子解
  • 简介:浦肯野神经元是小脑皮层唯一的输出神经元,其传入纤维主要包括来自橄榄核的盘状纤维和来自皮层颗粒神经元的平行纤维.基于与实际神经系统十分相似浦肯野神经元回路模型,本文研究了回路中三种神经元(浦肯野神经元,颗粒神经元,盘状纤维)的相位响应曲线(PRC)并结合它们各自的f-I曲线对来区分三种神经元的兴奋;进而对不同类型的神经元之间的同步进行分析,着重考察了不同神经元之间突触的电导系数与浦肯野神经元树突上的CaP电导系数的影响等,分析结果显示神经元之间同步对于它们信息传递起着重要作用.

  • 标签: 浦肯野神经元 相位响应曲线 同步性 突触电导系数 CaP电导系数
  • 简介:为了满足空间探测任务的要求,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠伸杆的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠附件振动的复杂及其对航天器本体的耦合影响,采用最优指令整形抑制挠伸杆的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠伸杆的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此小卫星的姿态控制精度.

  • 标签: 挠性伸杆 最优指令整形 自适应扰动抑制滤波器 复合振动控制
  • 简介:基于动力系统的稳定性理论、数值计算分岔图和线性化系统的最大Lyapunov指数,研究了经兴奋化学耦合的快峰神经元的同步动力学.研究表明,随着一些关键参数的改变,耦合神经元能呈现丰富的同步行为,如各种周期的同步和混沌的同步.研究结果对理解神经元系统的同步运动具有指导意义.

  • 标签: 快峰神经元模型 兴奋性化学突触 同步
  • 简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。

  • 标签: Poincaré-Chetaev变量 广义Routh方程 对称性 守恒量
  • 简介:利用CMAC神经网络与PID控制算法,提出了一种针对飞行器挠结构振动的混合控制方法.首先在给出系统动力学方程的基础上,利用CMAC神经网络的具体特点,给出了神经网络算法;进而将PID控制算法引入控制系统,形成了一种混合控制方法,该方法具有CMAC神经网络与PID控制算法两者的优点.最后针对复杂的飞行器挠结构振动问题进行了实例仿真,说明了算法的有效.

  • 标签: 挠性结构 控制研究 CMAC神经网络 PID控制算法 混合控制方法 神经网络算法
  • 简介:建立随机风作用下高速列车动力学参数的可靠优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠优化设计模型.经可靠优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全

  • 标签: 随机风 可靠性优化 动力学参数 失效概率 多目标遗传算法
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在判据的正确,并通过计算Jacobi矩阵的特征可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度,据此对动力学系统的复杂进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:峰放电频率适应是神经元在信息处理过程中重要的动力学特性之一.当神经系统受到外电场作用时,会对其动力学行为以及神经电信息的产生、传导产生影响.我们基于Leakyintegrate-and-fire(LIF)神经元模型,建立了外电场作用下改进的LIF神经元模型.采用随时间演化的膜电位曲线和峰放电频率曲线,以及随外电场变化的起始峰放电频率曲线和稳态峰放电频率曲线,研究不同强度、频率外电场作用下改进的LIF模型的适应变化.此外,还利用相邻峰峰间期(ISI)之间的相关进一步阐明外电场对神经元适应的影响.

  • 标签: 峰放电频率适应性 外电场 Leaky integrate—and—fire模型 ISI 相关性