简介:在市区进行地震资料采集面临施工和HSE的挑战。无线记录系统的应用使得地震采集工作更加安全、高效、方便及节省费用。最近研发的可控震源自主激发系统改进了在科威特城市繁华区进行的地震资料采集效率。2015年,KOC(科威特石油公司)和BGP(东方地球物理公司)签署合同,进行非常复杂的3D地震采集,包括海湾区、科威特城区和SABKHA区。勘探中应用了可控震源、炸药和气枪等不同类型的震源。KOC表达了他们的关切,然后,双方共同工作,致力于找到最佳施工方式,实现高效采集。为了保证资料采集的效率,应用了最新研发的DSS(数字地震系统)。该系统可直接控制能量源,进行高效施工,智能控制,实时QC和实时施工管理。整个可控震源自主激发过程可分为5步。这种自主激发技术的基础是DSS和Sercel记录系统中的一系列配置。但当有缆系统与无缆系统相结合进行混合采集时,最好是自主激发与编码激发相结合。以上技术的应用有助于实现勘探目的,提高效率。
简介:文中提出了一种方法,利用共生二氧化碳(CO_2)和甲烷中碳的同位素和组分质量平衡,识别由碳酸盐还原反应生成的生物甲烷的碳源。在沥青或石油的微生物甲烷生成反应中,甲烷的生成数量要多于CO_2,因此甲烷和CO_2的碳同位素组成相对较重,与热成因甲烷的碳同位素组成相似。而在以干酪根或现代有机物为碳源的微生物甲烷生成反应中,CO_2的生成数量要多于甲烷,因此,这类甲烷和CO_2的碳同位素组成较轻,这是浅层生物甲烷的典型特征。根据三篇文献记载的实例对这个概念作了定量分析和验证,以确定是否能够以足够高的准确度计算CO_2的相对生成量,进而预测页岩气藏和煤层气藏中甲烷的源碳类型和生成温度。安特里姆页岩气(密歇根州I)被证实主要源自现代储层温度或更低温度条件下页岩中的不成熟沥青。圣胡安盆地西部弗鲁特兰煤气主要源自现代储层温度条件下成熟度已进入油窗的煤中的沥青。而印第安纳州西南部出产的煤气主要源自现代储层温度或更高温度条件下未达到热成熟的干酪根。识别甲烷的碳源和生成温度,有助于圈出微生物甲烷的成藏有利区,而这类有利区的分布取决于生物气的生成能力。温度数据有助于确定生物甲烷现今是否仍在活跃生成抑或是早期生成的生物气的残留物。