简介:利用水热合成方法合成了2个新的苯并咪唑修饰的Keggin型多酸基化合物[(C_7H_6N_2)_3(H_3PMo_(12)O_(40))]·H_2O(1)和[KNa_2(C_7H_5N_2)_2(H_(2.5)SiW_(12)O_(40))_2]·6(C_7H_6N_2)(2)(C_7H_6N_2=苯并咪唑).化合物1为超分子结构,化合物2为2种碱金属钾和钠与多酸配位形成链状多酸基化合物,并通过元素分析和X-射线单晶衍射方法确定了2种化合物的晶体结构.单晶结构分析表明化合物1属于三斜晶系,P-1空间群,晶胞参数a=1.1580(7)nm,b=1.3159(8)nm,c=1.8254(12)nm,α=84.418(10)°,β=88.958(10)°,γ=65.852(10)°,V=2.5255(3)nm3,Z=2;化合物2也属于三斜晶系,P-1空间群,晶胞参数a=1.3586(9)nm,b=1.4403(10)nm,c=1.8365(13)nm,α=109.509(10)°,β=90.755(10)°,γ=114.864(10)°,V=3.0236(4)nm3,Z=1.
简介:基于刚性配体2-(4-噻唑基)苯并咪唑和二价金属铜离子在水热条件下成功地合成了2个Keggin型多酸化合物[CuⅡ(L1)2(H2O)]2[SiW12O40](1)和[(L1)4(L2)2(H3PMo12O40)2]·5H2O(2)(L1=2-(4-噻唑基)苯并咪唑,L2=苯并咪唑).通过单晶X-射线、红外光谱和元素分析对化合物1和2进行了表征.在化合物1中,存在2个独立的结构单元:Keggin型多酸和蝴蝶状的络合物阳离子[Cu(L1)2(H2O)]2+.化合物2为含有混合配体的超分子结构,由Keggin型多酸、4个游离的L1和2个L2配体组成.此外,研究了化合物1和2的电化学和光催化性能.
简介:利用水热合成方法合成了2个新的双核稀土-异烟酸配合物修饰的Dawson型有机-无机杂化化合物[Ln2(HINC)4(H2O)8(P2W18O62)]·nH2O(Ln=Ce(1),Eu(2);n=16(1),9(2);INC=4-吡啶羧酸/异烟酸).化合物1与2同构,并通过红外光谱、元素分析和X-射线单晶衍射方法确定了该化合物的晶体结构.单晶结构分析表明化合物1属于三斜晶系,P-1空间群,晶胞参数a=1.3236(3)nm,b=1.8650(4)nm,c=2.2872(5)nm,α=67.26(3)°,β=78.01(3)°,γ=70.34(3)°,V=4.8838(17)nm3,Z=2.化合物2也属于三斜晶系,P-1空间群,晶胞参数a=1.3201(2)nm,b=1.8569(3)nm,c=2.2856(4)nm,α=67.378(2)°,β=77.745(3)°,γ=70.039(3)°,V=4.8398(13)nm3,Z=2.
简介:选用新颖的有机配体3-噻吩-5-三氟甲基-2,3-二氢-1-H吡唑(L),在水热条件下成功得到2个新的基于Keggin多酸的超分子化合物,{[Ag(L)_2]_3[PMo_(12)O_(40)]}·3H_2O(1)和{[Ag(L)_2]_3[HSiMo_(12)O_(40)]}·3H_2O(2).通过红外光谱、元素分析和单晶X-射线对化合物1和2的结构进行了表征.化合物1和2同构,包含1个孤立的Keggin多阴离子和3个金属-有机亚单元[Ag(L)2]+.其中多酸阴离子和[Ag(L)2]+片段通过氢键作用力交替连接形成1个一维超分子链.相邻一维链进一步通过氢键连接成二维超分子层状结构.光催化和电化学性质表明,化合物1和2具有相同的电化学性能.
简介:采用铜(Ⅱ)盐和3,5-二氯水杨醛缩丝氨酸以及4,4′-联吡啶在乙醇水溶液中合成了具有二维层状的配位聚合物.通过元素分析、红外光谱对该配位聚合物进行了表征,并利用X射线单晶衍射仪对其结构进行了鉴定.晶体结构表明,该标题配合物属三斜方晶系,空间群C2/c,晶胞参数为a=2.711(3)nm,b=2.711(3)nm,c=4.977(5)nm;α=90.00°,β=90.00°,γ=120.00°,V=3.1678nm^3,Z=18,Dc=1.173g·cm^-3,F(000)=11448,μ=0.807mm-1,R1=0.0788,wR2=0.1872.
简介:用简单可行的方法合成了功能化的石墨烯(GNSPF6)和磁铁掺杂的还原氧化石墨烯(RGO-Fe3O4),并进一步研究了pH值、接触的时间和温度对它们吸附亚甲基蓝(MB)的影响.结果表明,随着pH值和温度的增加其吸附量也随之变大,从而说明该吸附过程是自发吸热的.因为GNSPF6的吸附过程只用了不到20min的时间,所以它的吸附是高效的.用经典的准一级反应、准二级反应和粒内扩散模型对其吸附过程进行动态分析,从结果可以发现,准二级动力学模型比准一级动力学模型更适用于描述吸附过程.采用传统的Langmuir,Freundlich和L-F吸附等温线模型来模拟分析数据,在20℃时,由Langmuir吸附等温线模型模拟分析得知GNSPF6和RGO-Fe3O4对MB的最大吸附量分别为374.4和118.4mg/g.
简介:合成了2种不同的钒取代Keggin型多金属氧酸盐(Na4PMo11VO40和(HGly)4PMo11VO40,以下分别简写为PMo11V和Gly-PMo11V),并用紫外光谱和红外光谱对其进行结构表征.以这2种化合物为效应物,采用酶动力学方法研究其对酪氨酸酶二酚酶的抑制效果、抑制机理和抑制类型.结果表明:PMo11V和Gly-PMo11V对酪氨酸酶均有明显的抑制效果,其IC50分别为0.522和0.447mmol/L.其中,PMo11V对酪氨酸酶的抑制过程属可逆的竞争型抑制,抑制常数KI为2.629mmol/L,而Gly-PMo11V对酪氨酸酶的抑制属不可逆的抑制.综合比较,Gly-PMo11V对蘑菇酪氨酸酶的抑制效果优于PMo11V.