简介:针对SINS/GNSS组合导航在GNSS信号异常时出现的系统滤波精度和稳定性下降的问题,提出一种基于EKF的自适应分类容错滤波算法。该算法通过比较系统残差协方差矩阵的实际值与理论值来检测GNSS信号是否存在异常,然后对异常信号进行分类,并对不同类别的异常信号使用不同的加权矩阵进行修正,以减弱异常值对系统滤波精度的影响,同时在滤波过程中加入UD分解,使系统滤波性能更稳定。仿真结果表明:该算法能够有效降低GNSS输出异常信号对SINS/GNSS组合导航带来的不利影响并提高系统稳定性;在GNSS信号出现异常情况下,其导航精度相比EKF至少提高95.6%,相比REKF和AEKF分别至少提高44.5%和24.6%。
简介:导航雷达在采集、传输和显示过程中,由于多种因素的影响导致最终形成的图像中舍有大量的噪声,影响了使用者对导航信息的分析和应用。传统的雷达图像去噪算法大多采用小波变换,但这种方法存在边缘模糊等问题。为了去除导航图像的噪声并解决小波变换中存在的边缘模糊问题,本文提出用基于多尺度几何变换的图像去噪方法对导航雷达图像进行处理,并利用基于多尺度几何变换的方法(包括基于Curvelet系数维纳滤波去噪方法和基于Contourlet域去噪方法)和基于小波变换的BayesShrink方法分别对含有模拟杂波和噪声的导航雷达图像进行仿真实验。实验结果表明:与基于小波变换的图像去噪方法相比,基于多尺度几何变换去噪方法能够更加有效去除雷达杂波和噪声。
简介:陀螺的噪声是影响组合导航系统精度的重要因素之一。以农机多传感器组合导航系统为研究背景,在分析经验模态分解去噪和小波去噪的基础上,提出了一种基于自相关特性的经验模态分解去噪方法。该方法根据本证模态函数分量的自相关函数特性,提出了一种含噪本证模态函数筛选策略。该方法能够自适应地确定主要含噪的本证模态函数分量,避免了需要人为确定的不足;同时,结合改进小波阈值去噪的优势,避免了将混叠在噪声中的有效信号完全消除,使其具有一定的自适应性。为了验证方法的有效性,利用农机组合导航系统中微机械陀螺的实际输出数据,分别采用改进阈值小波去噪方法、经验模态分解去噪和改进的经验模态分解去噪方法进行了对比试验。结果表明,改进经验模态分解去噪方法的效果要优于前者,在一定程度上能够改善农机多传感器组合导航系统的定位精度。
简介:温度是IMU及其他导航器件等精密仪器中需要监测的重要参数,传统的温度监测一般使用热电偶或者数字温度传感器(如DS18B20)等,监测程序复杂,功耗高,因此使用精密仪器中广泛采用的FPGA芯片独立完成高集成度、低功耗温度监测具有重要意义.在FPGA中通过搭建环形振荡器产生了自激振荡信号,该信号周期与FPGA芯片温度具有正相关性,通过对振荡信号周期的检测完成了对温度的监测,设计了一种以FPGA芯片同时作为敏感头和处理模块的温度传感器.通过对XilinxVirtex-2系列FPGA芯片进行实验,得到该传感器在-40℃~+60℃的范围内具有优于0.1℃的分辨率,优于0.5℃的检测精度,满足一般温度监测需要.实验表明该传感器具有功耗低、集成度高、可靠性好等优点.
简介:预测类Apollo返回舱外形在高焓来流下的气动热特性,研究网格Reynolds数、壁面温度、多种化学反应模型以及限制器对预测热流的影响.采用ESI-CFD-FASTRAN软件作为数值模拟平台,使用基于温度梯度及分子扩散效应的热流模型;空间离散采用Roe-FDS格式,时间推进采用点隐式;采用等温壁面条件.数值计算表明:(1)热流在返回舱头部驻点处达到一个极值,沿着壁面热流不断下降,经过返回舱肩部热流有突越上升;(2)满足网格Reynolds数小于10的网格获得的热流较为准确;(3)使用Gupta模型计算得到的热流与Park85模型得到的类似,但是获得的热流分布类似;(4)采用湍流模型获得的头部肩部热流结果与层流结果相同;(5)二阶min-mod限制器实现了高阶格式,其计算得到的热流结果在肩部略高,但是整体分布略低于不带限制器的格式.因此,在计算中采用满足网格Reynolds数壁面网格,采用带限制器的高阶格式计算获得的热流分布更加准确;由于头部热流主要贡献并非来源于湍流,因此对于肩部热流采用层流模型足够准确.
简介:针对随机时滞和异步相关噪声情况下的状态估计问题,提出了一种改进的高斯滤波算法(GF),并给出了其适用于高维系统的实现形式—随机时滞和异步相关容积卡尔曼滤波器(CKF-RDCN)。首先,通过满足Bernoulli分布的互不相关随机序列,来描述系统观测数据中可能存在的随机时滞现象,将量测噪声作为状态变量用以实现对观测时滞后验概率密度的估计。其次,利用一阶斯特林插值公式来近似估计,由于过程噪声和量测噪声异步相关,而导致的含有随机变量的多维积分问题。最后,依据三阶球径容积法则,给出了CKF-RDCN滤波算法的详细设计。此外,经典GF算法是所提出的改进GF算法的特例,其作为一个通用的非线性滤波算法框架,根据不同的后验概率密度估计方法,可以有不同的实现形式。仿真结果表明,相比于扩展卡尔曼滤波算法(EKF)以及容积卡尔曼滤波算法(CKF),CKF-RDCN在解决含有观测时滞和相关噪声系统的状态估计问题时,具有更高的精度和更好的数值稳定性。
简介:GEO卫星在导航系统中发挥着基本导航、增强和转发等三大功能。针对北斗系统GEO卫星的特殊性和兼容性,对北斗GEO卫星播发的D2导航电文的特点进行了分析,利用GEO的静地特性在基带信号处理中应用数学思想提出了基于二次函数逼近的快速牵引,推导了GEO卫星位置速度的计算公式,提出了基于模糊控制的GEO伪距测量算法,提高了信号处理通道的通用性和兼容性。对相关算法和策略在基于DSP+FPGA的软件接收机中利用实际信号进行了验证,在省略精捕获时间的情况下实现了50Hz以下的多普勒频移精度,伪距测量方法的通用性节省了50%的资源和工作量,相关算法具有良好的实用价值。
简介:以SINSiGPS组合导航系统为背景,在对Kalman滤波原理和工程应用进行深入分析的基础上,总结了该方法的不足,提出了应用神经网络和模糊推理技术对系统噪声、观测噪声和其相关阵进行直接调控的方法。该方法根据新息和新息方差的变化,实时调整自适应因子,间接改变Kalman滤波器的当前观测量和过去信息的比例关系。仿真结果表明,该算法对模型和噪声干扰有较强的自适应性,能够有效抑制滤波发散,在不损失原有精度的前提下,提高了系统的鲁棒性。
简介:为提高光电平台的控制性能和稳定性,以平台反馈回路所用的光纤陀螺传感器为研究对象,对光纤陀螺角速率的历史输出、当前量测以及随机漂移进行融合补偿。采用双自回归模型确定了光纤陀螺时间序列输出的自回归多项式和光纤陀螺随机漂移的自回归关系。以陀螺当前输出为量测量,结合卡尔曼滤波算法将陀螺历史输出和历史随机漂移融合进状态方程,并进行随机漂移在线估计补偿。实验结果表明,光纤陀螺随机漂移的AR模型能达到90%拟合效果,经卡尔曼滤波补偿后随机漂移能降到1/10。该方法能很好地抑制光电平台三个框架轴光纤陀螺的随机漂移,补偿率为80%~90%。
简介:传递对准是机载主惯导对子惯导进行初始化的过程,机翼变形对快速传递对准滤波精度有显著影响.讨论了传递对准中机翼变形的不同估计方法,通过分析建模过程比较了各种方法的特点及其适用范围.然后建立快速传递对准仿真环境,用“速度加姿态”匹配方式进行仿真,比较了不同方法所能达到的精度.最终从对准精度、快速性、模型依赖度、计算量等方面,对各种传递对准中机翼弹性变形的处理方法进行了比较总结,结果表明,将弹性变形当作有色噪声且使用卡尔曼滤波量测扩增法进行传递对准滤波器设计时,在估计精度和计算量方面达到最好折衷.所得结论为快速传递对准弹性变形的处理提供了工程应用参考.