简介:由条带和流向涡的循环再生构成的近壁自维持过程(self-sustainingprocess,SSP)是壁湍流产生和维持的重要机制.文章通过对最小槽道的直接数值模拟(directnumericalsimulation,DNS)获得近壁自维持过程的流场数据,采用正规正交分解法(properorthogonaldecomposition,POD)对该数据进行分析,获得了不同流向和展向尺度的特征模态,通过将Navier—Stokes方程在这些模态上进行投影,得到近壁自维持过程的降阶模型,并采用DNS数据对降阶模型的预测能力进行了评价.该模型被初步应用于大涡模拟近壁模型的构造.
简介:为了减小MEMS陀螺仪的正交误差,进一步提高陀螺精度,在Simulink环境中对陀螺结构和测控系统进行了建模和仿真。首先在理想状态的陀螺结构模型基础上建立了包含机械热噪声、模态间耦合等非理想因素的结构模型,并给出了陀螺结构的相关设计参数。其次在陀螺结构模型上以自激振荡和AGC控制技术为基础设计了驱动回路,该回路可在短时间内将驱动幅度稳定在10μm,且驱动频率为4048Hz(驱动模态的谐振频率)。然后分析了模态间耦合信号的作用方式并建立了正交校正和检测闭环力反馈回路,仿真结果显示,在全闭环状态下检测模态所受耦合力的幅度比未校正状态下降了5个数量级,等效输入角速度也从205(°)/s下降到了6.58(°)/h。最后对陀螺模型进行了整体测试,得到其标度因数和阈值分别为21.76mV/(°)/s和0.002(°)/s。
简介:在对后向台阶流场进行合成射流激励并研究不同激励频率对流场发展影响的过程中,发现流场在低频激励条件下与中高频条件下表现完全不同.为了详细分析这一现象,使用本征正交分解法(properorthogonaldecom-position,POD)将由PIV方法测得的流速分布数据进行分解,采用相位平均手段对含湍流动能较大的主要模态间的关系进行分析,并使用主要模态对流场的主要运动形式进行还原.结果表明,流场在各条件下的主要运动形式均可用少量低阶模态加以基本概括,低频激励下低阶模态相图近似于Lissajous图形,并描述了剪切层在激励作用下的摆动过程.
简介:针对线性高斯系统的平滑问题,分析了RTS固定区间平滑与双滤波器固定区间平滑两种算法,提出了一种滤波存储数据更少的RTS平滑新算法.结合平面内的运动追踪问题,基于二维CWPA模型,仿真分析了卡尔曼滤波、RTS固定区间平滑以及双滤波器平滑算法的估计性能.仿真结果表明,两种固定区间平滑算法的估计效果等效,精度均优于卡尔曼滤波,对于实际问题中固定区间平滑算法的选用具有一定的参考价值.最后,结合双滤波器结构提出了一种基于双平滑器的舰载武器惯导传递对准精度评估方法,结果表明新方法相比于单一的平滑算法,可以获取更优的综合平滑性能,特别提升了水平姿态对准误差的平滑估计性能.
简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。
简介:采用卡尔曼滤波方法进行动基座对准过程中,载体挠曲运动等因素会导致系统噪声、量测噪声的不确定性,即系统参数的不确定性。将多模型估计理论应用于捷联系统动基座对准过程中,可以有效抑制系统不确定性因素的影响。建立了捷联惯导系统误差模型和引入外部位置、速度信息的量测模型,针对对准过程中系统噪声和量测噪声不确定的情况建立了多模型自适应估计器。在同等条件下进行了单一模型对准和利用多模型估计理论进行对准的仿真比较,结果显示:基于多模型估计的对准完成后捷联系统具有更高的导航精度;由此说明,动基座对准过程中,系统参数不确定的情况下,多模型估计器有更好的适用性。
简介:为了解决目前导航设备维修保障工作中存在的维修资源分散、维修效率较低等问题,新建了基于Web的导航设备数字维修平台,分别设计了远程查询Agent、远程推理Agent、远程测试Agent等功能子模块。各Agent功能自治,有利于模块化设计和系统扩展。多Agent联合则可以提高系统的分布计算能力和整体性能。针对远程查询、推理、测试等多Agent通信问题,提出了一种易于实现的应用层黑板模型,采用MicrosoftSQLServer数据库表保存黑板消息,作为多Agent信息交换的中介。黑板消息的读取和写入操作,采用ADO-NET数据库访问驱动来实现,避免了编写复杂的会话层通信程序。
简介:提出了一种基于期望模式修正(EMA)的改进交互式多模型(IMM)算法。该算法主要解决自主水下航行器(AUV)复杂工作环境下量测噪声统计特性未知或易发生变化时的状态估计问题,其核心思想是将期望模式修正机制和交互式多模型滤波算法相结合,利用状态估计过程中的获取的模型概率进行决策,得到更加接近与系统真实模式的期望模型集合,再通过期望模型集合滤波结果对固定模型集合滤波结果进行修正。与传统的交互式多模型算法相比,提出的基于期望模式修正的交互式多模型算法可以捕捉到系统模式更细微的变化。仿真结果表明,该算法可以大幅提高AUV组合导航系统的估计精度和稳定性。
简介:在原有研究的基础上,针对实验数据观测点疏密分布均匀或不均匀的工程实际情况,分别运用全局准则和局部准则,研究最小概率DWO非线性辨识方法中的带宽选择关键问题,提出了校正AIC准则和LCV准则两种不同的带宽选择方法,并将这些方法应用于四频差动激光陀螺的温度误差模型辨识中,比较和验证了这些方法的正确性和适应性。研究结果表明:①对于"分布均匀"的情况,宜采用校正AIC准则;②对于"分布不均匀"的情况,宜采用LCV准则;③形成了自动带宽选择算法。总之,这些方法为解决"带宽选择"问题提供了有效途径,从而进一步提高了最小概率DWO方法的工程应用价值。
简介:移动机器人的目标检测要求其对特定的静止或运动物体进行运动分析及检测。以Voyager-III移动机器人系统为研究对象,实现非理想光照下,对橘红色目标足球的运动检测。提出在传统三帧差分法基础上,先利用Markowitz投资组合模型进行足球目标的特征提取,将场地非感兴趣的目标中,出现全部像素值发生变化的目标去除,再进行图像帧间差分。利用CCD摄像机对比赛环境中足球的运动轨迹进行录制,选取具有代表性的各帧视频图像、Markowitz算法优化后的差分图像和跟踪图像,结果表明跟踪图像不含非目标物的干扰,克服了差分图像存在空洞的问题,为移动机器人提供了一种实用的运动目标检测方法。
简介:为减小温度对导航精度的影响,实现系统级的温度补偿,在实验中采用静态条件下的标定方法;基于激光陀螺捷联惯性系统的误差模型方程,用广义逆算法顺利分离求得陀螺各零偏及标度因数值;根据以往温度误差模型的结构特点,运用渐近辨识方法(ASYM)中的最终输出误差准则(FOE)对温度误差模型中非线性部分的阶次进行准确的计算,确定了合理的温度误差模型结构。为了解决用最小二乘法辨识模型结构的系数时,信息矩阵求逆容易溢出的问题,采用了自适应的岭估计算法确定陀螺零偏温度误差模型的系数,实现了系统级的温度误差建模。所得到的温度误差模型补偿效果比定阶前明显提高。